首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组A3×3X=b有唯一解ξ1=(1,一1,2)T,α是3维列向量,方程(A┆α)X=b有特解η1=(1,一2,1,3)T,则方程组(A┆α)X=b的通解是___________.
设线性方程组A3×3X=b有唯一解ξ1=(1,一1,2)T,α是3维列向量,方程(A┆α)X=b有特解η1=(1,一2,1,3)T,则方程组(A┆α)X=b的通解是___________.
admin
2018-03-30
69
问题
设线性方程组A
3×3
X=b有唯一解ξ
1
=(1,一1,2)
T
,α是3维列向量,方程(A┆α)X=b有特解η
1
=(1,一2,1,3)
T
,则方程组(A┆α)X=b的通解是___________.
选项
答案
k(0,一1,一1,3)
T
+(1,一2,1,3)
T
,其中k是任意常数
解析
AX=b有唯一解→r(A)=3→r(A┆α)=3→r(A┆α)=r((A┆α)┆b)=3.
方程组(A┆α)X=b的通解形式为kξ+η,其中kξ是(A┆α)X=0的通解,η是(A┆α)X=b的特解.
已知(A┆α)X=b有特解η
1
=(1,一2,1,3)
T
.另一个特解可取η
2
=(1,一1,2,0)
T
.
故(A┆α)X=b有通解k(η
1
一η
2
)+η
1
=k(0,一1,一1,3)
T
+(1,一2,1,3)
T
,或k(η
1
一η
2
)+η
2
=k(0,一1,一1,3)
T
+(1,一1,2,0)
T
,其中k是任意常数.
转载请注明原文地址:https://kaotiyun.com/show/VwX4777K
0
考研数学三
相关试题推荐
讨论级数的敛散性.
设向量β可由向量组α1,α2,…,αn线性表示,证明:表示唯一的充分必要条件是向量组α1,α2,…,αn线性无关.
已知函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’’(x)+f(x)=2ex.(I)求f(x)的表达式;(II)求曲线的拐点.
设向量组(Ⅰ):α1,α2,…,αr可由向量组(Ⅱ):β1,β2,…,βr,线性表示,则【】
设正态总体X~N(μ,σ2),X1,X2,…,Xn为其简单随机样本,样本均值为X,若P{|X-μ|<a)=P{|-μ|<b},则的值()
设某种电子器件的寿命(以小时计)T服从参数为λ的指数分布,其中λ>0未知.从这批器件中任取n只在时刻t=0时投入独立寿命试验,试验进行到预订时间T0结束,此时有k(0<k<n)只器件失效.(Ⅰ)求一只器件在时间T0未失效的概率;(Ⅱ)求
设X1,X2,…,Xn是来自总体X的简单随机样本,X的概率密度为f(x)=,一∞<x<+∞,λ>0是未知参数.(Ⅰ)求λ的矩估计量;(Ⅱ)求λ的最大似然估计量
在球面x2+y2+z2=5R2(x>0,y>0,z>0)上,求函数f(x,y,z)=lnx+lny+3lnz的最大值,并利用所得结果证明不等式(a>0,b>0,c>0).
求二元函数z=f(x,y)=x2y(4-x-y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
将一枚硬币随意投掷n次,设Xn表示“正面”出现的次数,Ф(x)为标准正态分布的分布函数,则().
随机试题
下列属于罗格列酮禁忌证的是
大量雄激素有拮抗下列哪项激素的作用
建设项目财务管理的基本原则包括( )。
某建设项目由厂房、办公楼、宿舍等单项工程组成,则可包含在各单项工程综合概算中的内容有()。
背景材料:某城市郊区新建一级公路长3km,路面设计宽度15m,含中型桥梁一座。路面面层结构为沥青混凝土。粗粒式下面层厚8cm,中粒式中面层厚6cm,细粒式上面层4cm。经批准的路面施工方案为:沥青混凝土由工厂集中厂拌(不考虑沥青拌合厂设备安装拆除费、场
根据企业破产法律制度的规定,申请人向人民法院提出破产申请后,在一定期限内可以撤回破产申请,该期限是()。
定期存款和活期存款是按照()区分的。
勤奋和懒惰属下列哪种特性?()
设R是一个2元关系,有3个元组,S是一个3元关系,有3个元组。如T=R×S,则T的元组的个数为()。
Jemerappelleencore_____jouroùjesuisarrivéàParis.
最新回复
(
0
)