首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y|0≤x≤1,0≤y≤1},计算二重积分I=xy fxy"(x,y)dxdy。
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y|0≤x≤1,0≤y≤1},计算二重积分I=xy fxy"(x,y)dxdy。
admin
2017-12-29
42
问题
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,
f(x,y)dxdy=a,其中D={(x,y|0≤x≤1,0≤y≤1},计算二重积分I=
xy f
xy
"
(x,y)dxdy。
选项
答案
将二重积分[*]xyf
xy
"
(x,y)dxdy转化为累次积分可得 [*]xyf
xy
"
(x,y) dxdy=f
0
1
dyf
0
1
xyf
xy
"
(x,y)dx。 首先考虑∫
0
1
xyf
xy
"
(x,y)dx,注意这里把变量y看作常数,故有 ∫
0
1
xyf
xy
"
(x,y)dx= y∫
0
1
xyf
y
’
(x,y)=xyf
y
’
(x,y)|
0
1
一∫
0
1
yf
y
’
(x,y)dx =yf
y
’
(1,y)—yf
y
’
(x,y)dx。 由f(1,y)=f(x,1)=0易知,f
y
’
(1,y)=f
x
’
(x,1)=0。所以 ∫
0
1
xyf
xy
"
(x,y)dx= —∫
0
1
yf
y
’
(x,y)dx。 因此 [*]xyf
xy
"
(x,y)dxdy=∫
0
1
dy∫
0
1
xyf
xy
"
(x,y)dx=一∫
0
1
dyf
y
’
(x,y)dx, 对该积分交换积分次序可得, 一∫
0
1
dy∫
0
1
yf
y
’
(x,y)dx=一∫
0
1
dx∫
0
1
yf
y
’
(x,y)dy 再考虑积分∫
0
1
yf
y
’
(x,y)dy,注意这里把变量x看作常数,故有 ∫
0
1
yf
y
’
(x,y)dy=∫
0
1
ydf(x,y)= yf(x,y)|
0
1
一∫
0
1
f(x,y)dy = —∫
0
1
f(x,y)dy, 因此 [*]xyf
xy
"
(x,y) dxdy=—∫
0
1
dx∫
0
1
yf
y
’
(x,y)dy =∫
0
1
dx∫
0
1
f(x,y)dy=[*]f(x,y)dxdy=a。
解析
转载请注明原文地址:https://kaotiyun.com/show/WLX4777K
0
考研数学三
相关试题推荐
微分方程的通解是________.
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵.证明:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
求下列函数的导数:y=ef(x).f(ex);
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.证明:存在η∈[-a,a],使a3f"(η)=3∫-aaf(x)dx.
求不定积分
求下列极限.
求下列极限.
求函数f(x,y)=x2+2y2一x2y2在区域D={(x,y)|x2+y2≤4,y≥0}上的最大值与最小值.
求函数z=x2+y2+2x+y在区域D:x2+y2≤1上的最大值与最小值.
试证明:曲线y=恰有三个拐点,且位于同一条直线上.
随机试题
维持膝关节稳定性最重要的因素是
以下关于代谢性酸中毒的叙述不正确的是
全科医疗作为一种基层医疗保健,它不是
A、胎漏B、胎动不安C、暗产D、堕胎E、滑胎妊娠期,出现腰酸腹痛,胎动下坠,或阴道少量流血者应诊断为
根据我国现行宪法和有关法律的规定,下列关于政治权利和自由的说法中,错误的是哪一项?()
甲公司为增值税一般纳税人,适用的增值税税率为17%。2014年1月25日以其拥有的一项非专利技术与乙公司生产的一批商品进行交换。交换日,甲公司换出非专利技术的成本为80万元,累计摊销为15万元,未计提减值准备,公允价值无法可靠计量;换入商品的账面成本为72
水平一体化物流是指同一行业的多个企业,通过共同利用物流渠道,获得规模经济效益、提高物流效率。水平一体化物流须具备物流需求和物流供应的信息平台,要有大量企业参与并存在较多的商品量。根据上述定义,下列选项属于水平一体化物流的是()。
Somesuffererswillquicklyberestoredtoperfecthealth,______otherswilltakealongertime.
Whereistheconversationmostlikelytakingplace?
Accordingtothe"hygienehypothesis,"firstproposedin1989,exposuretoavarietyofbacteria,virusesandparasiticwormsea
最新回复
(
0
)