首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y|0≤x≤1,0≤y≤1},计算二重积分I=xy fxy"(x,y)dxdy。
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y|0≤x≤1,0≤y≤1},计算二重积分I=xy fxy"(x,y)dxdy。
admin
2017-12-29
63
问题
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,
f(x,y)dxdy=a,其中D={(x,y|0≤x≤1,0≤y≤1},计算二重积分I=
xy f
xy
"
(x,y)dxdy。
选项
答案
将二重积分[*]xyf
xy
"
(x,y)dxdy转化为累次积分可得 [*]xyf
xy
"
(x,y) dxdy=f
0
1
dyf
0
1
xyf
xy
"
(x,y)dx。 首先考虑∫
0
1
xyf
xy
"
(x,y)dx,注意这里把变量y看作常数,故有 ∫
0
1
xyf
xy
"
(x,y)dx= y∫
0
1
xyf
y
’
(x,y)=xyf
y
’
(x,y)|
0
1
一∫
0
1
yf
y
’
(x,y)dx =yf
y
’
(1,y)—yf
y
’
(x,y)dx。 由f(1,y)=f(x,1)=0易知,f
y
’
(1,y)=f
x
’
(x,1)=0。所以 ∫
0
1
xyf
xy
"
(x,y)dx= —∫
0
1
yf
y
’
(x,y)dx。 因此 [*]xyf
xy
"
(x,y)dxdy=∫
0
1
dy∫
0
1
xyf
xy
"
(x,y)dx=一∫
0
1
dyf
y
’
(x,y)dx, 对该积分交换积分次序可得, 一∫
0
1
dy∫
0
1
yf
y
’
(x,y)dx=一∫
0
1
dx∫
0
1
yf
y
’
(x,y)dy 再考虑积分∫
0
1
yf
y
’
(x,y)dy,注意这里把变量x看作常数,故有 ∫
0
1
yf
y
’
(x,y)dy=∫
0
1
ydf(x,y)= yf(x,y)|
0
1
一∫
0
1
f(x,y)dy = —∫
0
1
f(x,y)dy, 因此 [*]xyf
xy
"
(x,y) dxdy=—∫
0
1
dx∫
0
1
yf
y
’
(x,y)dy =∫
0
1
dx∫
0
1
f(x,y)dy=[*]f(x,y)dxdy=a。
解析
转载请注明原文地址:https://kaotiyun.com/show/WLX4777K
0
考研数学三
相关试题推荐
设u1=2,un+1=收敛.
证明:级数条件收敛.
设0≤un≤,则下列级数中一定收敛的是()
求二阶常系数线性微分方程y"+λy’=2x+1的通解,其中λ为常数.
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3.证明:β,Aβ,A2β线性无关;
设y=y(x)是由sinxy=确定的隐函数,求y’(0)和y"(0)的值.
设有两条抛物线y=nx2+和y=(n+1)x2+,记它们交点的横坐标的绝对值为an,求:这两条抛物线所围成的平面图形的面积Sn;
设数列{an)单调减少,的收敛域为()
设X与Y独立且X~N(μ,σ2),Y服从区间[一π,π]上的均匀分布,求Z=X+Y的密度fZ(z)。
设f(x)=,讨论f(x)的单调性、凹凸性、拐点、水平渐近线.
随机试题
CT值的物理意义是
在SQLServer2000中,为STUDENT表插入3条记录,内容见下表。请写出实现插入功能的SQL语句。
运动神经元病是一组病因为未明的选择性侵犯
关于精神分裂症中单纯型的临床表现,不正确的说法是
患者,男,45岁。在住院期间医生告诉他其母因意外去世,患者听后哈哈大笑,此症状是
假如甲罪的法定刑为“三年以上十年以下有期徒刑”,下列关于量刑的说法正确的是:
(2005年)一端固定,一端为球形铰的大柔度压杆,横截面为矩形(见图5-69),则该杆临界力Pcr为()。
Themeetingispostponeduntilnextweek,______wewon’tbesobusy.
(2016·江西)加涅将学习结果分为智慧技能等五种类型的依据是()
A、Mutethephone.B、Callthecustomerservice.C、Disableincomingcalls.D、Leavethephoneinthedormitory.C请求建议题。女士的电话一直响个不停,
最新回复
(
0
)