首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(一∞,+∞)内二阶可导,且f(x)和f"(x)在(一∞,+∞)内有界,证明: f’(x)在(一∞,+∞)内有界.
设函数f(x)在(一∞,+∞)内二阶可导,且f(x)和f"(x)在(一∞,+∞)内有界,证明: f’(x)在(一∞,+∞)内有界.
admin
2015-07-22
60
问题
设函数f(x)在(一∞,+∞)内二阶可导,且f(x)和f"(x)在(一∞,+∞)内有界,证明: f’(x)在(一∞,+∞)内有界.
选项
答案
存在正常数M
0
,M
2
,使得对[*]∈(一∞,+∞),恒有 |f(x)|≤M
0
,|f"(x)|≤M
2
.由泰勒公式,有 [*] 所以函数f’(x)在(一∞,+∞)内有界.
解析
转载请注明原文地址:https://kaotiyun.com/show/DrU4777K
0
考研数学三
相关试题推荐
2022年4月21日,国家主席习近平应邀以视频方式出席博鏊亚洲论坛2022年年会开幕式并发表主旨演讲。习近平主席在演讲中提出亚洲未来发展的目标:“打造世界的()”。①和平稳定锚②增长动力源③合作新高地
我国社会主要矛盾发生变化,没有改变我们对我国杜会主义所处历史阶段的判断。以下对我国社会主义所处历史阶段的判断正确的有()。①我国仍处于并将长期处于社会主义初级阶段②我国是世界最大发展中国家③我国已处于社会主义发达阶段④我国已是发
2022年5月20日,全球首艘10万吨级智慧渔业大型工船()在山东青岛交付运营,标志着我国深远海大型养殖工船产业实现了由“0”到“1”的进阶发展,有望为中国乃至世界深远海养殖打造“中国样本”,率先探索海洋渔业养殖从近海走向深远海,从农业
结合材料回答问题:材料1鸦片战争是中国近代史的开端,正是从鸦片战争开始,中国从古代的辉煌开始走向近代的沉沦,亦即从一个独立自主的富强之国沦落成了一个受西方列强侵略欺凌的贫弱之国。因此,李鸿章在一封奏折中发出了中国正面临着“数千年未有之大
抗日战争时期,中国共产党为了团结一切可以团结的人士参与抗战,在抗日根据地建立了一种崭新的统一战线性质的政权——三三制政权,为抗战胜利作出了重要贡献。三三制是指抗日民主政府在工作人员分配上实行“三三制”原则,即
新时代的经济体制改革,不只为了应对挑战,更是为了把握机遇;不只为了短期目标,更是为了放眼长远。站在“两个一百年”的历史交汇点上,唯有将经济体制改革不断向纵深推进,努力在重要领域和关键环节上取得新突破,才能为全面深化改革创造条件、提供动力;唯有加快完善社会主
实践充分证明,人民代表大会制度是符合中国国情和实际、体现社会主义国家性质、保证人民当家作主、保障实现中华民族伟大复兴的好制度。在中国实行人民代表大会制度是
当前,我国科技创新仍存在行政干预过多、科研项目和经费管理相关规章制度不够合理、科技成果向现实生产力转化不畅等问题。因此,加速我国科技创新步伐需要()。
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
(1)第一类曲线积分的积分弧L是_________的(定向、不定向);利用L的参数方程将这个积分化为定积分时,下限α必须____________上限β.(2)第二类曲线积分的积分弧L是____________的(定向、不定向);利用L的参数方程将这个积分
随机试题
胸膜腔内负压是如何形成的?有何意义?
(2013年第29题)能够逆向转运胆固醇到肝的脂蛋白是
有关角膜代谢所需氧来源的说法,正确的是
帕金森病的主要症状是
胚胎期造血叙述正确的为()。
施工成本核算的基本内容包括( )。
商业银行在向客户说明有关投资风险时应说明最不利的投资情形和投资结果。()
学生刚学英语时,对26个字母的记忆两头容易、中间难,这种现象就是所谓的()。
转继承,是指继承人在继承开始后遗产分割前死亡的,其有权继承的遗产转由其法定继承人(包括配偶、子女、父母、兄弟姐妹、祖父母和外祖父母)继承的制度。下列属于转继承的是()。
民权运动
最新回复
(
0
)