首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数. (1)试将x=x(y)所满足的微分方程=0变换为y=y(x)所满足的微分方程. (2)求变换后的微分方程满足初始条件y(0)=0,y’(0)
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数. (1)试将x=x(y)所满足的微分方程=0变换为y=y(x)所满足的微分方程. (2)求变换后的微分方程满足初始条件y(0)=0,y’(0)
admin
2017-07-26
72
问题
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.
(1)试将x=x(y)所满足的微分方程
=0变换为y=y(x)所满足的微分方程.
(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=
的解.
选项
答案
(1)由反函数的求导法则,知[*]=1. 在上式两边同时对变量x求导,得[*].代入原微分方程,得 y"一y=sinx. ① (2)微分方程①所对应的齐次微分方程y"一y=0的通解为 [*]=c
1
e
x
+c
2
e
—x
, 其中c
1
,c
2
为任意常数. 微分方程①的特解为 y
*
=Acosx+Bsinx, 代入到微分方程①中,得A=0,B=一[*]sinx,从而微分方程①的通解为 y=c
1
e
x
+c
2
e
—x
一[*]sinx, 其中c
1
,c
2
为任意常数. 由条件y(0)=0,y’(0)=[*]得c
1
=1,c
2
=一1.因此,所求初值问题的解为 y=e
x
一e
—x
一[*]sinx.
解析
利用反函数的求导法则与复合函数的求导法则求出[*]的表达式.代入原微分方程,即得所求的微分方程.然后再求此方程满足初始条件的微分方程.
转载请注明原文地址:https://kaotiyun.com/show/WuH4777K
0
考研数学三
相关试题推荐
[*]
设x轴正向到方向l的转角为ψ,求函数f(x,y)=x2-xy+y2在点(1,1)沿方向z的方向导数,并分别确定转角ψ,使得方向导数有(1)最大值,(2)最小值,(3)等于0.
已知线性方程组(Ⅰ)a,b为何值时,方程组有解?(Ⅱ)方程组有解时,求出方程组的导出组的一个基础解系:(Ⅲ)方程组有解时,求出方程组的全部解.
设连续函数f(x)满足,则f(x)=_________.
设z=f(u,v,x),u=φ(x,y),v=ψ(y),求复合函数z=f(φ(x,y),φ(y),x)的偏导数
设f(x)连续,(A为常数),求φ’(x)并讨论φ’(x)在x=0处的连续性.
求下列函数指定阶的导数:(1)y=excosx,求y(4);(2)y=x2sin2x,求y(50).
下列积分中积分值为0的是().
设y=f(x)为区间[0,1]上的非负连续函数.(1)证明存在c∈(0,1).使得在区间[0,f]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;(2)设f(x)在(0,1)内可导,且,证明(1)中的
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,b)使
随机试题
关于盆腔内脏器与腹膜关系的叙述,哪项是正确的()
肝的体表投影,下列描述哪项不正确()
胸腔积液较多,一般每次抽液量不超过多少()
冬天小儿的尿液冷却后呈白色浑浊是由于
A机电工程公司通过竞标总承包了一新建机械厂的通风与空调工程,总工期为6个月。主辅材料均由A机电公司供应。其中,分部分项工程量清单计价合计为536万元;措施项目清单计价合计60万元;其他项目清单计价合计15万元。取费费率为:规费费率4.85%;税率3.56%
会计科目的设置原则包括()。
依次填入下列各句横线处的成语,恰当的一组是()。①他的演唱真是________,赢得了全场观众的热烈喝彩。②只要问题得到解决,其他问题就________了。③形式多样的文艺节目不断出现,有如________。
下列各句中没有语病且句意明确的一句是:
Whyarethelivesofplantsnotwell-knowntomostpeople?
A、Theylivedincaves.B、Theydidn’thavetheirlanguage.C、Theycouldonlybuildhouseswithanimalhonesandskins.D、Theywer
最新回复
(
0
)