首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
验证下列函数都是所给微分方程的解,其中哪些是通解? (1)x2y〞-2xyˊ+2y=0,y=x(C1+C2x); (2)y〞=2yˊ+2y=ex,y=ex(C1cosx+C2 sinx+1); (3)y〞+4y=0,y=C1sin2x+C2sinxcosx
验证下列函数都是所给微分方程的解,其中哪些是通解? (1)x2y〞-2xyˊ+2y=0,y=x(C1+C2x); (2)y〞=2yˊ+2y=ex,y=ex(C1cosx+C2 sinx+1); (3)y〞+4y=0,y=C1sin2x+C2sinxcosx
admin
2014-07-17
107
问题
验证下列函数都是所给微分方程的解,其中哪些是通解?
(1)x
2
y〞-2xyˊ+2y=0,y=x(C
1
+C
2
x);
(2)y〞=2yˊ+2y=e
x
,y=e
x
(C
1
cosx+C
2
sinx+1);
(3)y〞+4y=0,y=C
1
sin2x+C
2
sinxcosx;
(4)xy〞+yˊ=0,y=C
1
lnx
C
2
;
(5)y〞-4xyˊ+(4x
2
-2)y=0,y=(C
1
+C
2
x)e
x
2
;
(6)y〞-9y=9,y=C
1
e
-3x
+C
2
e
2-3x
-1.
选项
答案
(1)y=C
1
x+C
2
x
2
,2y=2C
1
x+2C
2
x
2
,yˊ=C
1
+2C
2
x,-2xyˊ=-2C
1
x-4C
2
x
2
,y〞=2C
2
,x
2
y〞=2C
2
x
2
,故x
2
y〞-2xyˊ+2y=0,即y=x(C
1
+C
2
x)是原方程的解,又因为C
1
与C
2
相互独立,故又是通解. (2)y=e
x
(C
1
cosx+C
2
sinx+1), 2y=2e
x
(C
1
cosx+C
2
sinx+1), yˊ=e
x
[(C
1
+C
2
)cosx+(C
2
-C
1
)sinx+1], 2yˊ=2e
x
[(C
1
+C
2
)cosx+(C
2
-C
1
)sinx+1], y〞=e
x
(2C
2
cosx-2C
1
sinx+1) =2e
x
(C
2
cosx-2C
1
sinx+1), 故 y〞-2yˊ+2y=e
x
. 又C
1
与C
2
相互独立,从而y=e
x
(C
2
cosx+C
2
sinx+1)又是原方程的通解. (3)y=C
1
sin2x+C
2
sinxcosx(C
1
+C
2
/2)sin2x=ksin2x, 其中 k=C
2
/2+C
1
,即C
1
与C
2
不相互独立. 又yˊ=2kcos2x,y〞=-4ksin2x,故y〞+4y=0.故y=C
1
sin2x+C
2
sinxcosx是原方程的解,但不是通解. (4)y=C
1
lnx
C
2
=C
1
C
2
ln|x|=kln|x|,其中k=C
1
C
2
,即C
1
与C
2
不相互独立. 又yˊ=k/x,y〞=-k/x
2
,故y〞+ky=0,从而y=C
1
lnx
C
2
是原方程的解,但不是通解. (5)y=(C
1
+C
2
x)e
x
2
, (4x
2
-2)y=(4x
2
-2)(C
1
+C
2
x)e
x
2
=2(2C
2
x
5
+2C
1
x
2
一C
2
x-C
1
)e
x
2
, yˊ=(2C
2
x
2
+2C
1
x+C
2
)e
x
2
, 4xyˊ=4(2C
2
x
3
+2C
1
x
2
+C
2
x)e
x
2
, y〞=2(2C
2
x
3
+2C
1
x
2
+3C
2
x+C
1
)e
x
2
. 故y〞=4xyˊ+4(x
2
-2)y=0,又C
1
与C
2
相互独立,从而y=(C
1
+C
2
x)e
x
2
又是原方程的通解. (6)y=C
1
e
-3x
+C
2
e
2-3x
-1=(C
1
+C
2
e
2
)e
-3x
+1=ke
-3x
-1, 即C
1
与C
2
不是相互独立的. yˊ=-3ke
-3x
,y〞=9ke
-3x
,故y〞-9y=9,又C
1
与C
2
不是相互独立的,从而y=C
1
e
-3x
+C
1
e
2-3x
=1是解,但不是通解.
解析
转载请注明原文地址:https://kaotiyun.com/show/OhU4777K
0
考研数学三
相关试题推荐
孟子说:“尽其心知其性,知其性,知天矣。”这一命题( )
简单商品经济的基本矛盾是( )
“心诚则灵,心不诚则不灵”的命题是
企业经营全球化的重要标志是
“十四五”时期,要围绕国家重大区域发展战略,把握文化产业发展特点规律和资源要素条件,促进形成文化产业发展新格局。为此,必须
中国坚定奉行独立自主的和平外交政策,中国将始终不渝走和平发展道路。无论中国发展到哪一步,中国永不称霸、永不扩张、永不谋求势力范围。历史已经并将继续证明这一点。中国走和平发展道路已经并将进一步显示出其世界意义,主要是
在“五位—体”总体布局中,生态文明建设是其中一位;在新时代坚持和发展中国特色社会主义基本方略中,坚持人与自然和谐共生是其中一条基本方略;在新发展理念中,绿色是其中一大理念;在三大攻坚战中,污染防治是其中一大攻坚战。这“四个一”,体现了
已知二次型f(x1,x2,x3)的矩阵A有三个特征值1,-1,2,该二次型的规范形为________.
设线性无关的函数y1,y2与y3均为二阶非齐次线性方程的解,C1与C2是任意常数.则该非齐次线性方程的通解是().
随机试题
下面属于诉讼事务调查的是
属于人类社会行为的是
就多数传染病而论,下列哪一种传染过程最常见
血证的预后与下列哪一项无关
含有毒性植物蛋白,具有细胞原浆毒作用的药是()。
(2009年)静止的流体中,任一点的压强的大小与下列哪一项无关?()
根据《城市规划编制办法》的规定,下列不属于控制性详细规划的强制性内容的是()
下列项目中,应按规定征收营业税的是()。
“总之,我们不要四面出击。四面出击,全国紧张,很不好。我们绝不可树敌太多,必须在一个方面有所让步,有所缓和,集中力量向另一方面进攻。我们一定要做好工作,使工人、农民、小手工业者都拥护我们,使民族资产阶级和知识分子中的绝大多数人不反对我们。这样一来,国民党残
Thesalesmanapproachedthehousecautiouslybecauseoftheviciousdog.
最新回复
(
0
)