首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α为n维单位列向量,E为n阶单位矩阵,则
设α为n维单位列向量,E为n阶单位矩阵,则
admin
2018-07-31
23
问题
设α为n维单位列向量,E为n阶单位矩阵,则
选项
A、E一αα
T
不可逆.
B、E+αα
T
不可逆.
C、E+2αα
T
不可逆.
D、E一2αα
T
不可逆.
答案
A
解析
对于任意的n维单位列向量α.可以证明选项(A)中的矩阵的行列式必等于零.为简明起见,以n=3为例来证明(一般情形的证明类似).设α=(a
1
,a
2
,a
3
)
T
是任意的3维单位列向量,则a
1
2
+a
2
2
+a
3
2
=1.选项(A)中的矩阵的行列式为(不妨没a
1
≠0)
det(E一αα)=
分别将第2行的a
2
倍、第3行的a
3
倍加到第1行上去.并利用a
1
2
+a
2
2
+a
3
2
=1,得行列式的第1行为零行,故该行列式等于零,从而知选项(A)中的矩阵是不可逆的.故选(A).
转载请注明原文地址:https://kaotiyun.com/show/Wwg4777K
0
考研数学一
相关试题推荐
设齐次线性方程组为正定矩阵,求a,并求当|X|I=时XTAX的最大值.
设二次型f=2x12+2x22+ax32+2x1x2+2x1x3+2x2x3经过正交变换X=QY化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)求矩阵A的特征值;(2)判断矩阵A可否对角化.
设二维非零向量α不是二阶方阵A的特征向量.(1)证明α,Aα线性无关;(2)若A2α+Aα一6α=0,求A的特征值,讨论A可否对角化;
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1—ξ2—ξ3,Aξ3=2ξ1—2ξ2—ξ3.(1)求矩阵A的全部特征值;(2)求|A*+2E|.
设Y~,求矩阵A可对角化的概率.
设点M1(1,一1,一2),M2(1,0,3),M3(2,1,2),则点M3到向量的距离为___________.
随机试题
由于长江不断改道,在武汉地区形成了众多的湖泊。
腹部闭合性实质脏器损伤的主要临床表现是()
小儿月巴胖的标准为
下列关于符合施工现场环境保护实施规定的是()。
自愿原则是指公民、法人或者其他组织有权根据自己的意愿决定参不参加民事活动,参加何种民事活动,根据自己的意愿依法处分自己的财产和权利。()
与MMPI一样,10个临床量表中有7个可按照项目内容分为若干亚量表,这其中不包括()。
“鱼与熊掌不可兼得”属于()。
国家主席习近平出席亚洲文明对话大会开幕式并发表主旨演讲时提到,一切生命有机体都需要新陈代谢,否则生命就会停止。文明也是一样,如果长期(),必将走向衰落。
一般预防的对象不包括()。
WhatcouldpossiblyaccountfortheamazingsuccessofCoca-Cola?Howhasthiscombinationofcarbonatedwater(苏打水),sugar,acid
最新回复
(
0
)