首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α为n维单位列向量,E为n阶单位矩阵,则
设α为n维单位列向量,E为n阶单位矩阵,则
admin
2018-07-31
31
问题
设α为n维单位列向量,E为n阶单位矩阵,则
选项
A、E一αα
T
不可逆.
B、E+αα
T
不可逆.
C、E+2αα
T
不可逆.
D、E一2αα
T
不可逆.
答案
A
解析
对于任意的n维单位列向量α.可以证明选项(A)中的矩阵的行列式必等于零.为简明起见,以n=3为例来证明(一般情形的证明类似).设α=(a
1
,a
2
,a
3
)
T
是任意的3维单位列向量,则a
1
2
+a
2
2
+a
3
2
=1.选项(A)中的矩阵的行列式为(不妨没a
1
≠0)
det(E一αα)=
分别将第2行的a
2
倍、第3行的a
3
倍加到第1行上去.并利用a
1
2
+a
2
2
+a
3
2
=1,得行列式的第1行为零行,故该行列式等于零,从而知选项(A)中的矩阵是不可逆的.故选(A).
转载请注明原文地址:https://kaotiyun.com/show/Wwg4777K
0
考研数学一
相关试题推荐
设二次型f=2x12+2x22+ax32+2x1x2+2x1x3+2x2x3经过正交变换X=QY化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn—1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关;(2)求A的特征值与特征向量.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)求矩阵A的特征值;(2)判断矩阵A可否对角化.
设二维非零向量α不是二阶方阵A的特征向量.(1)证明α,Aα线性无关;(2)若A2α+Aα一6α=0,求A的特征值,讨论A可否对角化;
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1—ξ2—ξ3,Aξ3=2ξ1—2ξ2—ξ3.(1)求矩阵A的全部特征值;(2)求|A*+2E|.
随机试题
男性,60岁,以干咳、无力、活动后气促、体重明显减轻6个月入院。体检:呼吸28次/分,两肺底可闻及吸气末期Velcro罗音,有杵状指(趾)。胸部X线:两肺中下野弥漫性网格小结节状浸润影;肺功能示限制性通气障碍和弥散量减少。
行政诉讼撤销判决适用于()。
某市政工程,业主与监理、施工单位分别签订了工程监理合同和工程施工合同。施工单位编制的进度计划符合合同工期要求,并得到了监理工程师批准。进度计划如下图所示:施工过程中,发生了如下事件:事件一:由于施工方法不当,打桩1工程施工质量较差,补桩用去20万元,
隧道防排水包含()。
戊戌变法属于自上而下的资产阶级性质的改良运动。()
如果一个家长想用看电视作为强化物,奖励儿童认真按时完成作业的行为,最合适的安排应该是()。
什么是底线?底线是必须坚守的最低条件或限度。世界万事万物都有底线,越过了底线,意味着发生质变;守不住底线,就是把自己逼上绝地。根据上述定义,下列哪一项情形属于“越过了底线”()
TheproblemwiththereadingcourseasmentionedinthefirstParagraphisthat______.Theword"scrutiny"(Line3,Para.3)mos
Outpatientsurgicalcenter
在报表的设计视周中,不能使用的是
最新回复
(
0
)