首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,η2,η3为3个n维向量,已知n元齐次方程组Ax=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n一3,证明η1,η2,η3为AX=0的一个基础解系.
设η1,η2,η3为3个n维向量,已知n元齐次方程组Ax=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n一3,证明η1,η2,η3为AX=0的一个基础解系.
admin
2017-10-21
55
问题
设η
1
,η
2
,η
3
为3个n维向量,已知n元齐次方程组Ax=0的每个解都可以用η
1
,η
2
,η
3
线性表示,并且r(A)=n一3,证明η
1
,η
2
,η
3
为AX=0的一个基础解系.
选项
答案
因为r(A)=n一3,所以AX=0的基础解系包含3个解.设γ
1
,γ
2
,γ
3
是Ax=0的一个基础解系,则条件说明γ
1
,γ
2
,γ
3
可以用η
1
,η
2
,η
3
线性表示.于是有下面的关于秩的关系式: 3=r(γ
1
,γ
2
,γ
3
)≤r(η
1
,η
2
,η
3
;γ
1
,γ
2
,γ
3
) =r(η
1
,η
2
,η
3
)≤3,从而 r(γ
1
,γ
2
,γ
3
)=r(η
1
,η
2
,η
3
;γ
1
,γ
2
,γ
3
)=r(η
1
,η
2
,η
3
),这说明η
1
,η
2
,η
3
和γ
1
,γ
2
,γ
3
等价,从而η
1
,η
2
,η
3
也都是AX=0的解;又r(η
1
,η
2
,η
3
)=3,即η
1
,η
2
,η
3
线性无关,因此是AX=0的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/XdH4777K
0
考研数学三
相关试题推荐
证明不等式:xarctanx≥ln(1+x2).
设A=有三个线性无关的特征向量.(1)求a;(2)求A的特征向量;(3)求可逆矩阵P,使得P—1AP为对角阵.
设为发散的正项级数,令Sn=a1+a2+…+an(a=1,2,…).证明:收敛.
就a,b的不同取值,讨论方程组解的情况.
设A=(α1,α2,α3,α4,α4),其中α1,α3,α5线性无关,且α2=3α1一α3一α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设函数f(x),g(x)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f’(a)=g’(a),f"(x)>g"(x)(x>a).证明:当x>a时,f(x)>g(x).
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=一2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是().
对二元函数z=f(x,y),下列结论正确的是().
已知三元二次型XTAX经正交变换化为2y12一y22一y32,又知矩阵B满足矩阵方程其中α=[1,1,一1]T,A*为A的伴随矩阵,求此二次型XTBX的表达式.
已知二次型f(x1,x2,x3)=422一3x32+4x1x2—4x1x3+8x2x3.写出二次型f的矩阵表达式;
随机试题
卵巢门细胞分泌()
典型的三叉神经痛疼痛的性质是
编制概预算的目的主要是用作筹措和控制建设工程费用的依据。()
2009年1月,甲、乙、丙、丁四人计划设立P有限责任公司(以下简称“P公司”,生产并销售电子产品,四人约定:公司注册资本100万元,其中甲、乙以货币出资20万元,丙以机器设备出资,丁以其专利权出资。2009年2月,四人委托甲向公司登记机关提出设立申请;20
储户张某到银行要求提前支取其妻子的定期存款,这项业务必须遵守的规定有()。[2009年10月真题]
某贸易有限责任公司注册资本为3万元。公司股东的下列出资方案中,符合规定的是()。
下列选项中,适合作为《工艺美术欣赏——陶器》一课教学难点的是()。
《人民警察法》规定了公安机关在救护、扶助、调解等公益方面的责任、义务,主要包括()。
用中国象棋的车、马、炮分别表示不同的自然数。如果车÷马=2,炮÷车=4,炮﹣马=56,那么“车+马+炮”等于多少?()
Thetrampwaslockedinthestore______
最新回复
(
0
)