首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,η2,η3为3个n维向量,已知n元齐次方程组Ax=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n一3,证明η1,η2,η3为AX=0的一个基础解系.
设η1,η2,η3为3个n维向量,已知n元齐次方程组Ax=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n一3,证明η1,η2,η3为AX=0的一个基础解系.
admin
2017-10-21
37
问题
设η
1
,η
2
,η
3
为3个n维向量,已知n元齐次方程组Ax=0的每个解都可以用η
1
,η
2
,η
3
线性表示,并且r(A)=n一3,证明η
1
,η
2
,η
3
为AX=0的一个基础解系.
选项
答案
因为r(A)=n一3,所以AX=0的基础解系包含3个解.设γ
1
,γ
2
,γ
3
是Ax=0的一个基础解系,则条件说明γ
1
,γ
2
,γ
3
可以用η
1
,η
2
,η
3
线性表示.于是有下面的关于秩的关系式: 3=r(γ
1
,γ
2
,γ
3
)≤r(η
1
,η
2
,η
3
;γ
1
,γ
2
,γ
3
) =r(η
1
,η
2
,η
3
)≤3,从而 r(γ
1
,γ
2
,γ
3
)=r(η
1
,η
2
,η
3
;γ
1
,γ
2
,γ
3
)=r(η
1
,η
2
,η
3
),这说明η
1
,η
2
,η
3
和γ
1
,γ
2
,γ
3
等价,从而η
1
,η
2
,η
3
也都是AX=0的解;又r(η
1
,η
2
,η
3
)=3,即η
1
,η
2
,η
3
线性无关,因此是AX=0的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/XdH4777K
0
考研数学三
相关试题推荐
设f(x)在[1,2]上连续,在(1,2)内可导,且f’(x)≠0,证明:存在ξ,η,ζ∈(1,2),使得。
证明:
证明:当0<x<1时,(1+x)ln2(1+x)<x2.
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求.
设n阶矩阵A与对角矩阵合同,则A是().
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
设D是由点O(0,0),A(1,2)及B(2,1)为顶点构成的三角形区域,计算.
设n阶方阵A的特征值为2,4,…,2n,则行列式|3E一A|=________。
设A是n阶正定阵,E是n阶单位阵,证明:A+E的行列式大于1.
随机试题
在绘制网络图时,应用较多的方法是【】
体层摄影中,X线曝光期间连杆摆过的角度称为
轻刺激能唤醒,醒后能进行简短而正确的交谈,见于下列哪种意识障碍
A、肾皮质B、肾髓质C、肾间质D、肾盂E、肾盏血行感染引起的急性肾盂肾炎,细菌最先侵犯
已知图中所示的三根弹簧的劲度系数分别为K1,K2,K3,振体的质量为m,则此系统沿铅垂方向振动的固有频率为( )。
金属材料物理特性随焊接温度的变化是影响焊接应力与变形的主要因素,而材料的()随温度的变化是决定焊接热应力,应变的重要物理特性。
韩国人受西方文化影响,接受礼品要当面打开。()
儿童的心理障碍更多以()为主。
不愿提高政府债务上限的共和党众议员和参议员将____。他们在____具有可怕后果的政策,而最终的结果将与他们声称所要的截然相反,因为违约将立刻让政府的重要性增加而不是减少。依次填入画横线部分最恰当的一项是()。
菲利普·莫里斯发行一种半年付息的债券,具有如下特性:利率为8%,收益率为8%,期限为15年,麦考利久期为10年。(1)利用上述信息,计算调整后的久期。(2)解释为什么调整后的久期是计算债券利率敏感性的较好方法。(3)确定调整后的持有
最新回复
(
0
)