首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=有一个特征值是3. (Ⅰ)求y的值; (Ⅱ)求正交矩阵P,使(AP)TAP为对角矩阵; (Ⅲ)判断矩阵A2是否为正定矩阵,并证明你的结论.
设矩阵A=有一个特征值是3. (Ⅰ)求y的值; (Ⅱ)求正交矩阵P,使(AP)TAP为对角矩阵; (Ⅲ)判断矩阵A2是否为正定矩阵,并证明你的结论.
admin
2016-03-16
36
问题
设矩阵A=
有一个特征值是3.
(Ⅰ)求y的值;
(Ⅱ)求正交矩阵P,使(AP)
T
AP为对角矩阵;
(Ⅲ)判断矩阵A
2
是否为正定矩阵,并证明你的结论.
选项
答案
(Ⅰ)3是A的特征值,故|3E-A|=8(3-y-1)=0,解出y=2. [*] A
2
的特征值为 λ
1
=λ
2
=λ
3
=1,λ
4
=9. 当λ=1时,(E-A
2
)χ=0的基础解系为 ξ
1
=(1,0,0,0)
T
,ξ
2
=(0,1,0,0)
T
,ξ
3
=(0,0,-1,1)
T
当λ=9时,(gE-A
2
)χ=0的基础解系为ξ
4
=(0,0,1,1)
T
. 对ξ
1
,ξ
2
,ξ
3
,ξ
4
进行单位化: η
1
=[*]=(1,0,0,0)
T
,η
2
=[*]=(0,1,0,0)
T
, η
3
=[*]=(0,0,-1,1)
T
,η
4
=[*]=(0,0,1,1)
T
, 令P=(η
1
,η
2
,η
3
,η
4
)=[*],则P为正交矩阵,且 p
T
A
2
p=(AP)
T
ALP=A=[*] (Ⅲ)(A
2
)
T
=A
2
,所以A
2
是对称矩阵. 由于A
2
的特征值1,1,1,9全大于零,所以A
2
为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/XgbD777K
0
考研数学二
相关试题推荐
党的十九大明确提出了2035年实现社会主义现代化强国的奋斗目标。
唐宋八大家是唐宋时期八大散文作家的合称,即唐代的韩愈、柳宗元和宋代的苏轼、苏洵、苏辙、范仲淹、欧阳修、王安石。()
快递公司服务范围即服务网络能覆盖或到达的范围,是衡量快递公司竞争力的最重要因素,也是快递企业提供快递服务的物质基础,服务范围决定了快递公司快件所能到达的服务区域,对于客户来说,快递公司能提供的服务范围当然是越大越好。以下哪项如果为真,不能支持上述判断?(
2011年华东六省一市,人均公共绿地面积超过全国平均值的有几个省市?()
四年级一班选班长,每人投票从甲、乙、丙三个候选人中选一人,已知全班共52人,并且在计票过程中的某一时刻,甲得到17票,乙得到16票,丙得到11票。如果得票最多的候选人将成为班长。甲最少再得多少票就能够保证当选?()
设f(χ)在[1,+∞)上连续,若曲线y=f(χ),直线χ=1,χ=t(t>1)与χ轴围成的平面区域绕χ轴旋转一周所得的旋转体的体积为V(t)=[t2f(t)-f(1)]且f(2)=,求函数y=f(χ)的表达式.
χy〞-y′=χ2的通解为_______.
设A是m×n矩阵,则下列4个命题①若r(A)=m,则非齐次线性方程组Ax=b必有解;②若r(A)=m,则齐次方程组Ax=0只有零解;③若r(A)=n,则非齐次线性方程组Ax=b有唯一解;④若r(A)=
已知f(x)=在点x=0处连续,则a=________.
把当χ→0时的无穷小量α=ln(1+χ2)-ln(1-χ4),β=tantdt,y=arctanχ-χ排列起来,使排在后面的是前一个的高阶无穷小,则正确的排列次序是
随机试题
(2008年第67题)下列符合中度有机磷中毒时的胆碱酯酶活力是
在硫酸中,硫的化合价或氧化数是
博来霉素最严重的不良反应是( )。
吗啡的适应症是()。
全面建设小康社会进程中的关键问题是()。
消防设施施工安装以经法定机构批准或者备案的()为依据。
在嘻杂的环境中人们能够敏感地听见有人喊自己的名字,这是知觉的()
设f(x)在x=0的邻域内连续可导,g(x)在x=0的邻域内连续,且=0,又f’(x)=一2x2+∫0xg(x一t)dt,则().
A、很喜欢这家餐馆B、她不挑食C、喜欢和男的在一起D、喜欢吃私房菜C根据“只要和你在一起,我就很开心”这句话,可知选C。
Weshalltakethetreasureawaytoasafeplace.
最新回复
(
0
)