设齐次线性方程组 其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.

admin2017-07-26  25

问题 设齐次线性方程组

  其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.

选项

答案方程组的系数行列式 |A|=[*]=[a+(n一1)b](a一b)n—1. 当a≠b且a≠(1一n)b时,方程组仅有零解. 当a=b时,对系数矩阵A作行初等变换,有 [*] 原方程组的同解方程组为 x1,x2,…,xn=0, 其基础解系为 α1=(一1,1,0,…,0)T,α1=(一1,0,1,…,0)T,α3=(一1,0,0,…,1)T. 方程组的全部解是 x=c1α1+c2α2+…+cn—1αn—1(c1,c2,…,an—1为任意常数). 当a=(1一n)b时,对系数矩阵A作行初等变换,有 [*] 其基础解系为 β=(1,1,…,1)T. 方程组的全部解是 x=cβ(c为任意常数).

解析
转载请注明原文地址:https://kaotiyun.com/show/XrH4777K
0

随机试题
最新回复(0)