首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组 其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
设齐次线性方程组 其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
admin
2017-07-26
41
问题
设齐次线性方程组
其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
选项
答案
方程组的系数行列式 |A|=[*]=[a+(n一1)b](a一b)
n—1
. 当a≠b且a≠(1一n)b时,方程组仅有零解. 当a=b时,对系数矩阵A作行初等变换,有 [*] 原方程组的同解方程组为 x
1
,x
2
,…,x
n
=0, 其基础解系为 α
1
=(一1,1,0,…,0)
T
,α
1
=(一1,0,1,…,0)
T
,α
3
=(一1,0,0,…,1)
T
. 方程组的全部解是 x=c
1
α
1
+c
2
α
2
+…+c
n—1
α
n—1
(c
1
,c
2
,…,a
n—1
为任意常数). 当a=(1一n)b时,对系数矩阵A作行初等变换,有 [*] 其基础解系为 β=(1,1,…,1)
T
. 方程组的全部解是 x=cβ(c为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/XrH4777K
0
考研数学三
相关试题推荐
设f(x,y)在[a,b]×[c,d]上连续,,证明:gxy=gyx(x,y)=f(x,y)(a<x<b,c<y<d).
设随机变量X和1,相互独立且都服从正态分布N(0,1),而X1,X2,…,X9和Y1,Y2,…,Y9分别是来自总体X和Y的简单随机样本,求统计量所服从的分布,并指明参数.
设A是n阶矩阵,且A的行列式|A|=0,则A________.
证明:方程x=a+bsinx(其中a>0,b>0)至少有一个正根,并且它不超过a+b.
设x轴正向到方向l的转角为ψ,求函数f(x,y)=x2-xy+y2在点(1,1)沿方向z的方向导数,并分别确定转角ψ,使得方向导数有(1)最大值,(2)最小值,(3)等于0.
选取适当的变换,证明下列等式:
设随机变量x的概率密度函数为f(x)=,以Y表示对X进行三次独立重复观察中事件{X≤1/2)出现的次数,则P{Y=2}=________.
设A为m×n矩阵,且r(A)==r<n,其中.证明方程组AX=b有且仅有n一r+1个线性无关解;
设X,Y为两个随机变量,其中E(X)=2,E(Y)=-1,D(X)=9,D(Y)=16,且X,Y的相关系数为由切比雪夫不等式得P{|X+Y一1|≤10}≥().
设X为随机变量,E|X|r(r>0)存在,试证明:对任意ε>0有
随机试题
简述CIS手册的基本内容是什么?
A、采用化学发光剂作为酶反应底物B、用化学发光剂直接标记抗原或抗体C、抗体包被在磁颗粒表面D、发光底物是二价的三联吡啶钌E、以荧光物质标记抗体免疫荧光技术采用
患者左下颌阻生智齿为三根,拔除过程中远中舌根折断约2mm,根尖无病变,此外应采取的最佳治疗方案是()
关于信用保险合同的特征,下列说法不正确的是( )。
根据《企业破产法》的规定,下列关于债权人委员会的表述中,正确的是()。
学生干部选举前,有的家长给班主任陈老师送来礼物请求照顾,陈老师一概予以拒绝。这件事体现了陈老师()。
渎职罪在主观方面只能是故意。()
《大明律》规定的罪名和刑罚有()。
数据库(DB)、数据库系统(DBS)和数据库管理系统(DBMS)之间的关系是()。
经过多次失败之后,他终于成功地发明了一种比已有的任何一种都好的设备。
最新回复
(
0
)