首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(I)和(Ⅱ)都是4元齐次线性方程组,已知ξ1=(1,0,1,1)T,ξ2=(一1,0,1.0)T,ξ3=(0,l,1,0)。是(I)的一个基础解系,η1=(0,1,0,1)T,η=(1,1一1,0)T是(Ⅱ)的一个基础解系.求(I)和(Ⅱ)公共解.
设(I)和(Ⅱ)都是4元齐次线性方程组,已知ξ1=(1,0,1,1)T,ξ2=(一1,0,1.0)T,ξ3=(0,l,1,0)。是(I)的一个基础解系,η1=(0,1,0,1)T,η=(1,1一1,0)T是(Ⅱ)的一个基础解系.求(I)和(Ⅱ)公共解.
admin
2017-10-21
38
问题
设(I)和(Ⅱ)都是4元齐次线性方程组,已知ξ
1
=(1,0,1,1)
T
,ξ
2
=(一1,0,1.0)
T
,ξ
3
=(0,l,1,0)。是(I)的一个基础解系,η
1
=(0,1,0,1)
T
,η=(1,1一1,0)
T
是(Ⅱ)的一个基础解系.求(I)和(Ⅱ)公共解.
选项
答案
现在(I)也没有给出方程组,(I)有一个基础解系ξ
1
,ξ
2
,ξ
3
,c
1
η
1
+c
2
η
2
满足(I)的充分 必要条件为c
1
η
1
+c
2
η
2
能用ξ
1
,ξ
2
,ξ
3
线性表示,即r(ξ
1
,ξ
2
,ξ
3
,c
1
η
1
+c
2
η
2
)=r(ξ
1
,ξ
2
,ξ
3
).于是可以通过计算秩来决定c
1
,c
2
应该满足的条件: [*] 于是当3c
1
+c
2
=0时c
1
η
1
+c
2
η
2
也是(I)的解.从而(I)和(Ⅱ)的公共解为:c(η
1
—3η
2
),其中c可取任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/YKH4777K
0
考研数学三
相关试题推荐
判断级数的敛散性.
An×n=(α1,α2,…,αn),Bn×n=(α1+α2,α2+α3,…,αn+α1),当r(A)=n时,方程组BX=0是否有非零解?
设A是3×4矩阵且r(A)=1,设(1,一2,1,2)T,(1,0,5,2)T,(一1,2,0,1)T,(2,一4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,r(A)=3,且α1+α2=,则方程组AX=b的通解为__________.
证明.当x>0时,
将f(x)=*]展开成x一2的幂级数.
求幂级数(|x|<1)的和函数s(x)及其极值.
求幂级数的收敛区间.
设X~N(μ,σ2),其分布函数为F(x),对任意实数a,讨论F(—a)+F(a)与1的大小关系.
设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解。
随机试题
背景北京某工程据统计混凝土实物工作量约为23000m3,混凝土为商混不考虑现场搅拌,混凝土养护用水定额取700L/m3;拟定结构及前期阶段施工工期为300d;每天按照1.5个工作班计算。其中:K1=1.1,Q1=23000m3,N1=750L/m3,T
电算化档案资料管理的要求是什么?
锅炉压力容器与其他设备相比容易(),因此容易发生事故。
某单元格数据是文本格式的邮政编码,下列单元格的邮编输入方式正确的是______。
有关血液功能的叙述,正确的是
1999年10月1日,甲公司的退休职工王某在退休后6个月完成了一项方法发明创造,甲公司认为王某的发明与其在甲公司承担的本职工作有关,向王某提出该方法发明申请专利的权利属于甲公司,王某表示同意。2000年1月1日,甲公司向国务院专利行政部门提出发明专利的书面
以出让方式取得土地使用权的,属于房屋建设工程的,完成开发投资总额的()以上才可以进行建设用地使用权的转让。
发展社会主义民主政治,最根本的是要把()有机统一起来。
发展中国特色社会主义文化要坚持“两为”方向和“双百”方针。()
1963年,周恩来将我们党提出的一系列和平解决台湾问题的思想、政策和主张归纳为“一纲四目”。“一纲”即台湾必须统一于中国。“四目”为
最新回复
(
0
)