首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(I)和(Ⅱ)都是4元齐次线性方程组,已知ξ1=(1,0,1,1)T,ξ2=(一1,0,1.0)T,ξ3=(0,l,1,0)。是(I)的一个基础解系,η1=(0,1,0,1)T,η=(1,1一1,0)T是(Ⅱ)的一个基础解系.求(I)和(Ⅱ)公共解.
设(I)和(Ⅱ)都是4元齐次线性方程组,已知ξ1=(1,0,1,1)T,ξ2=(一1,0,1.0)T,ξ3=(0,l,1,0)。是(I)的一个基础解系,η1=(0,1,0,1)T,η=(1,1一1,0)T是(Ⅱ)的一个基础解系.求(I)和(Ⅱ)公共解.
admin
2017-10-21
21
问题
设(I)和(Ⅱ)都是4元齐次线性方程组,已知ξ
1
=(1,0,1,1)
T
,ξ
2
=(一1,0,1.0)
T
,ξ
3
=(0,l,1,0)。是(I)的一个基础解系,η
1
=(0,1,0,1)
T
,η=(1,1一1,0)
T
是(Ⅱ)的一个基础解系.求(I)和(Ⅱ)公共解.
选项
答案
现在(I)也没有给出方程组,(I)有一个基础解系ξ
1
,ξ
2
,ξ
3
,c
1
η
1
+c
2
η
2
满足(I)的充分 必要条件为c
1
η
1
+c
2
η
2
能用ξ
1
,ξ
2
,ξ
3
线性表示,即r(ξ
1
,ξ
2
,ξ
3
,c
1
η
1
+c
2
η
2
)=r(ξ
1
,ξ
2
,ξ
3
).于是可以通过计算秩来决定c
1
,c
2
应该满足的条件: [*] 于是当3c
1
+c
2
=0时c
1
η
1
+c
2
η
2
也是(I)的解.从而(I)和(Ⅱ)的公共解为:c(η
1
—3η
2
),其中c可取任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/YKH4777K
0
考研数学三
相关试题推荐
判断级数的敛散性,若级数收敛,判断其是绝对收敛还是条件收敛.
设为发散的正项级数,令Sn=a1+a2+…+an(a=1,2,…).证明:收敛.
判断级数的敛散性.
判断级数的敛散性.
设0<a<1,证明:方程arctanx=ax在(0,+∞)内有且仅有一个实根.
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有|f(x)一f(y)|≤M|x—y|k.(1)证明:当k>0时,f(x)在[a,b]上连续;(2)证明:当k>1时,f(x)≡常数.
设单位质点在水平面内作直线运动,初速度v|t=0=v0.已知阻力与速度成正比(比例系数为1),问t为多少时此质点的速度为?并求到此时刻该质点所经过的路程.
设有幂级数(1)求该幂级数的收敛域;(2)证明此幂级数满足微分方程y"一y=一1;(3)求此幂级数的和函数.
将f(x)=arctanx展开成x的幂级数.
已知线性方程组及线性方程组(Ⅱ)的基础解系ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T.求方程组(Ⅰ)和(Ⅱ)的公共解.
随机试题
下列不是易化扩散特点的是
下列关于酮体的叙述哪项是错误的
等渗缺水伴酸中毒患者,在补充碱性溶液纠正酸中毒后,可能发生
某著名景点在旅游旺季的时候需求量很大,而在旅游淡季的时候需求量就比较小,这种需求状况称为()。
企业在生产经营活动中发生的借款费用,准予扣除。()
共感、共情、同理心又称为(),是建立良好心理辅导关系的促进条件。
合理的收入分配制度是社会公平的重要体现,对于深化收入分配制度改革,下列说法正确的是()
中国现存的古代三大殿位于山东境内的是()。
甲与乙约定,甲窃取了财物后,由乙负责窝藏、销售赃物。乙的窝赃和销赃行为,构成()
窗体上有一个名称为Command1的命令按钮。其单击事件过程如下:PrivateSubCommand1_Click()Open"c:\f1.txt"ForInputAs#1Open"c:\f2.txt"ForOut
最新回复
(
0
)