首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
公务员
已知函数f(x)=ln(1+x)-x。 (1)求函数f(x)的单调区间及最大值。 (2)设a>0,b>0,若b≥a, ①求证:(e为自然对数的底数), ②若g(x)=xlnx,求证:g(a)+(a+b)ln2≥g(a+b)-g(b)。
已知函数f(x)=ln(1+x)-x。 (1)求函数f(x)的单调区间及最大值。 (2)设a>0,b>0,若b≥a, ①求证:(e为自然对数的底数), ②若g(x)=xlnx,求证:g(a)+(a+b)ln2≥g(a+b)-g(b)。
admin
2017-03-29
40
问题
已知函数f(x)=ln(1+x)-x。
(1)求函数f(x)的单调区间及最大值。
(2)设a>0,b>0,若b≥a,
①求证:
(e为自然对数的底数),
②若g(x)=xlnx,求证:g(a)+(a+b)ln2≥g(a+b)-g(b)。
选项
答案
(1)函数f(x)的定义域为(-1,+∞)。f’(x)=[*]-1。令f’(x)=0,得x=0。所以(0,+∞)为函数f(x)的减区间,(-1,0)为函数f(x)的增区间。由此得f(x)在x=0处取得最大值,为f(0)=0。 (2)①由函数区间可知,函数f(x)的最大值在x=0处取得为0。 所以f(x)≤0,ln(1+x)-x≤0,假设x=[*],则有 [*] ②g"(x)=[*],当x>0时,该函数在(0,+∞)上是凹的,所以 当a≠b时,不妨设a<b,于是:[*],从而 [*] 当a=b时,显而易见取等号,于是可得:g(a)+(a+b)ln2≥g(a+b)-g(b)。
解析
转载请注明原文地址:https://kaotiyun.com/show/YOGq777K
本试题收录于:
小学数学题库教师公开招聘分类
0
小学数学
教师公开招聘
相关试题推荐
Itshocksusthatalargepercentageofmiddleschoolstudents______skipbreakfastthemostimportantmealoftheday.
朗读、问答、复述课文、讲故事、角色扮演等可以让小学生“动起来,说出来”,是常见的______的好办法。
语言技能在外语学习中占有重要位置。《英语课程标准》提出,“语言技能是语言运用能力的重要组成部分。语言技能包括听、说、读、写四个方面的技能以及这四种技能的综合运用能力”。请以“Whyshouldweintegratethefourskillsi
趣味性教学的原则提出的专业依据是______。
听说法注重语音和口语训练,在语言技能训练的顺序安排上主张______,学生在老师的指导下开展操练活动或在对话中担任角色。
如果没有实行改革,建设速度就不会这样快。
如图,下列各数中,数轴上点A表示的可能是()。
已知数列{an)满足:a4n-3:1,a4n-1=0,a2n=an,n∈N*,则a2009______________;a2014______________
下列说法中正确命题有()个。①一个角的两边分别垂直于另一个角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两
已知向量m=(sin2x+2,cosx),n=(1,2cosx),设函数f(x)=mn,x∈R。(1)求f(x)的最小正周期与最大值;(2)在△ABC中,a,b,c分别是角A,B,C的对边,若f(A)=4,b=1,△ABC的面积为,求a
随机试题
_______不但在营养方面不可缺少,而且对食品和菜点的色、香、味、形的构成也起着重要作用。
检查脑动脉的仪器条件中,需要调节的是
己知交流电流i(t)的周期T=1ms,有效值I=0.5A,当t=0时,i=,则它的时间函数描述形式是()。
《(期货经纪合同)指引》《期货交易风险说明书》的内容和格式由()制定。
关于事业部制组织形式的说法,正确的是()。
在会计体系中,凭证号是一个重要的要素,在记账凭证和账簿中都是不可缺少的项目,其作用是()。
根据《农村土地承包法》的规定,耕地的承包期为()。
区县组织文艺演出下乡星火工程,为群众举办为期四个月的演出,你是县文化局负责人,如何开展?
某公司刚发了0.6元的股利,在未来三年以15%的增长率分发股利,三年后则以5%的低增速增长,当前的贴现率为12%,求股票价格。
搞清楚什么是社会主义、怎样建设社会主义,关键是
最新回复
(
0
)