首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型。
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型。
admin
2021-11-25
33
问题
三元二次型f=X
T
AX经过正交变换化为标准形f=y
1
2
+y
2
2
-2y
3
2
,且A
*
+2E的非零特征值对应的特征向量为α
1
=
,求此二次型。
选项
答案
因为f=X
T
AX经过正交变换后的标准形为f=y
1
2
+y
2
2
-2y
3
2
,所以矩阵A的特征值为λ
1
=λ
2
=1,λ
3
=-2 由|A|=λ
1
λ
2
λ
3
=-2得A
*
的特征值为μ
1
=μ
2
=-2,μ
3
=1 从而A
*
+2E的特征值为0,0,3,即α
1
为A
*
+2E的属于特征值3的特征向量,故也为A的属于特征值λ
3
=-2的特征向量。 令A的属于特征值λ
1
=λ
2
=1的特征向量为[*], 因为A为实对称矩阵,所以α
1
T
α=0,即x
1
+x
3
=0,故矩阵A的属于λ
1
=λ
2
=1的特征向量为 [*] 令P=(α
2
,α
3
,α
1
)=[*] 由P
-1
AP=[*]得 [*],所求的二次型为 f=X
T
AX=-[*]x
1
2
+x
2
2
-[*]x
3
2
-3x
1
x
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/Yiy4777K
0
考研数学二
相关试题推荐
设η为非零向量,,η为方程组AX=0的解,则a=______,方程组的通解为_______.
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B)(4
设D=,则A31+A32+A33=_________.
设a1,a2,...at为AX=0的一个基础解系,Β不是AX=0的解,证明:Β+Βa1,Β+a2,...Β+at线性无关。
设A为三阶方阵,A的每行元素之和为5,AX=0的通解为,设,求AΒ.
设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在n维非零列向量a,Β,使得A=aΒT.
设A为n阶非奇异矩阵,a是n维列向量,b为常数,.证明PQ可逆的充分必要条件是aTA-1a≠b.
设y=y(x)是二阶线性常系数微分方程y’’+Py’+qy=e3x满足初始条件y(0)=y’(0)=0的特解,则当x→0时,函数的极限()
随机试题
以群体为对象,以疾病的群体防治为目的的诊断是
一般资料:求助者,女性,47岁,本科学历,外资企业高级职员。案例介绍:求助者三个月前,偶然得知十七岁的女儿谈恋爱了,男友是外来打工者。老师反映,其女儿经常无故缺课,成绩逐步下降。求助者曾经严厉批评女儿,并去找女儿的男友,让他与女儿断绝来往。常为琐事和女儿
会计小刘按照公司王总通过手机QQ发来的信息,将96万元项目款打入指定账号,事后经过两人的交流,小刘得知王总并没有发送该消息,自己很可能遭遇诈骗,便立即报警。对于上述情况,下列说法正确的是()。
读下图,甲、乙表示两个不同的区域,完成问题。若甲表示我国的东部地带、乙表示中西部地带,则沿箭头①方向在区域问调配的是()。
设计理想住宅,应从科技服务于人类出发,以人类的健康幸福与文明发展为核心。按照上述理念进行设计,住宅区里,人与自然和谐相处,树林、溪流、湿地形成有机整体,为人们提供与大自然亲密接触的良好生态环境;采用高科技的毛细管冷暖传递系统调节室内空气,为人们提供恒温、“
水利工程是用于控制和调配自然界的地表水和地下水,达到除害兴利目的而修建的工程。根据上述定义,下列不涉及水利工程的是:
甲、乙两人在同一天就同样的发明创造提交了专利申请,专利局将分别向各申请人通报有关情况,并提出多种可能采用的解决办法。下列说法中,不可能采用__________。
EditorLauratalkswithMr.Brooksabouthisnewbookonrobotics.Asyoulisten,answerthequestionsorcompletethenotesin
A、Shehasn’tsentresumesyet.B、Shehasn’tgotanyrepliesyet.C、Shehasgotsomenewchances.D、Shehasalreadysignedanew
Wehavechosenwhatwebelievetobethefivemostspectacularnaturalwonders--thosethatarethebiggest,longestormostimpr
最新回复
(
0
)