设z=f(x,y)满足=4xy,且fx(x,0)=1,f(0,y)=2y, (Ⅰ)求f(x,y); (Ⅱ)设D={(x,y)|x≤x2+y2≤2x},求f(x,y)dxdy.

admin2021-03-18  12

问题 设z=f(x,y)满足=4xy,且fx(x,0)=1,f(0,y)=2y,
(Ⅰ)求f(x,y);
(Ⅱ)设D={(x,y)|x≤x2+y2≤2x},求f(x,y)dxdy.

选项

答案(Ⅰ)由[*]得[*] 由fx(x,0)=1得[*](x)=1,即[*] 由[*] 得f(x,y)=x2y2+x+h(y), 由f(0,y)=2y得h(y)=2y, 故f(x,y)=x2y2+x+2y. (Ⅱ)由对称性得I=[*]f(x,y)dxdy=[*](x2y2+x)dx dy, 令[*],则 I=[*](x2y2+x)dxdy=[*](r5cos2θsin2θ+r2cosθ)dr [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/Ysy4777K
0

最新回复(0)