首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,任取xi∈[a,b](i=1,2,…,n),任取ki>0(i=1,2,…,n),证明:存在ξ∈[a,b],使得 k1f(x1)+k2f(x2)+…+knf(xn)=(k1+k2+…+kn)f(ξ).
设f(x)在[a,b]上连续,任取xi∈[a,b](i=1,2,…,n),任取ki>0(i=1,2,…,n),证明:存在ξ∈[a,b],使得 k1f(x1)+k2f(x2)+…+knf(xn)=(k1+k2+…+kn)f(ξ).
admin
2015-07-10
10
问题
设f(x)在[a,b]上连续,任取x
i
∈[a,b](i=1,2,…,n),任取k
i
>0(i=1,2,…,n),证明:存在ξ∈[a,b],使得
k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
)=(k
1
+k
2
+…+k
n
)f(ξ).
选项
答案
因为f(x)在[a,b]上连续,所以f(x)在[a,b]上取到最小值m和最大值M, 显然有 m≤f(x
i
)≤M(i=1,2,…,n), 注意到k
i
>0(i=1,2,…,n),所以有 k
i
m≤k
i
f(x
i
)≤k
i
M(i=1,2,…,n), 同向不等式相加,得 (k
1
+k
2
+…+k
n
)m≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
)≤(k
1
+k
2
+…+k
n
)M, [*] 即k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
)=(k
1
+k
2
+…+k
n
)f(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/YtU4777K
0
考研数学三
相关试题推荐
关于习近平法治思想,下列说法正确的有几项?()①其深刻回答了新时代为什么实行全面依法治国、怎样实行全面依法治国等一系列重大问题②其是马克思主义法治理论中国化的最新成果③其是中国特色社会主义法治理论的重大创新
2021年9月6日,《全国高标准农田建设规划(2021-2030年)》发布。下列相关说法错误的是()。
当地时间2022年6月13日,杨洁篪同沙利文在卢森堡举行会晤。杨洁篪强调,台湾问题事关中美关系政治基础,处理不好将产生颠覆性影响。这个风险不仅存在。还会随着美大搞“以台制华”、台湾当局大摘“倚美谋独”而不断升高。美方不要有任何误判和幻想,必须恪守一个中国原
习近平总书记强调:“()不是装饰品,不是用来做摆设的,而是要用来解决()要解决的问题的。”
()是支撑习近平新时代中国特色社会主义思想体系的四梁八柱。()是实现“两个一百年”奋斗目标、实现中华民族伟大复兴中国梦的“路线图”和“方法论”。
古希腊有人提出过一个诡辩式的论断:1粒谷子落地时没有响声,2粒谷子落地时也没有响声,3粒谷子落地时还是没有响声。以此类推,1整袋谷子落地时也不会有响声。这个错误的论断说明
设A与B均为n,阶矩阵,且A与B合同,则().
(1)微分方程的阶数是指__________.(2)n阶微分方程的初值条件的一般形式为______________.(3)函数y1(x)与y2(x)在区间I上线性无关的充要条件是___________.(4)函数y=eλx是常系数线性微分方程yn+P
验证极限存在,但不能用洛必达法则得出.
将一均匀的骰子连续扔六次,所出现的点数之和为X,用切比雪夫不等式估计P(14<X<28)=________.
随机试题
集体合同的时间效力的表现形式有()
下列关于NHL的病理类型中,哪些属于中度恶性?
(2007年第75题)下列属于退行性变的疾病是
下列行为中,属于无效民事行为的有()。
人们常说“教学有法,教无定法”,此话反映了教师劳动的()。(2014·河南)
Wherearetheynow?
Electronicmailhasbecomeanextremelyimportantandpopularmeansofcommunication.Theconvenienceandefficiencyofelec
JudgingbythewildlycheeringaudienceattheorgyofconsumerismthatwasOprahWinfrey’s"UltimateFavouriteThings"show,A
A、Theykeepallthepropertyoftheorganization.B、Theyareresponsibleformostofthebusinessdebts.C、Theytakemorerespon
Postgraduatedilemmas[A]Decidingwhetherornottobecomeapostgraduatecanbeadaunting(令人畏缩的)prospect.Evenifyouaresure
最新回复
(
0
)