首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1、λn分别为n阶实对称矩阵A的最小和最大特征值,X1、Xn分别为对应于λ1和λn的特征向量,记 证明:λ1≤f(X)≤λn,mlnf(X)=λ1=f(X1),maxf(X)=λn=f(Xn).
设λ1、λn分别为n阶实对称矩阵A的最小和最大特征值,X1、Xn分别为对应于λ1和λn的特征向量,记 证明:λ1≤f(X)≤λn,mlnf(X)=λ1=f(X1),maxf(X)=λn=f(Xn).
admin
2018-04-18
52
问题
设λ
1
、λ
n
分别为n阶实对称矩阵A的最小和最大特征值,X
1
、X
n
分别为对应于λ
1
和λ
n
的特征向量,记
证明:λ
1
≤f(X)≤λ
n
,mlnf(X)=λ
1
=f(X
1
),maxf(X)=λ
n
=f(X
n
).
选项
答案
只证最大值的情形(最小值情形的证明类似):必存在正交变换X=PY(P为正交矩阵,Y=(y
1
,…,y
n
)
T
),使得X
T
AX[*]λ
1
λ
n
2
+…+λ
n
λ
n
2
≤λ
n
(λ
1
2
+…+λ
n
2
)=λ
n
||Y||
2
,由于正交变换不改变向量长度,故有||Y||
2
=||X||
2
=X
T
X,上式即X
T
AX≤λ
n
X
T
X,当X≠0时,X
T
X>0,即得f(X)=[*]≤λ
n
,又f(X
n
)=[*]=λ
n
,于是得maxf(X)=λ
n
.
解析
转载请注明原文地址:https://kaotiyun.com/show/Zjk4777K
0
考研数学二
相关试题推荐
[*]
设其中f(x)在x=0处可导,fˊ(x)≠0,f(0)=0,则x=0是F(x)的().
设n阶矩阵A非奇异(n≥2),A*是矩阵A的伴随矩阵,则().
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则().
设A=(aij)n×n是正交矩阵,将A以行分块为A=(a1,a2,…an)T,则方程组AX=b,b=(b1,…,bn)T的通解为_________.
证明方程在区间(0,+∞)内有且仅有两个不同实根.
求微分方程y"(zx+y’2)=y’满足初始条件y(1)=y’(1)=1的特解.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,X1,X2是分别属于λ1和λ2的特征向量,试证明X1+X2不是A的特征向量.
试证明:当x>0时θ(x)为单调增加函数且
随机试题
与麻醉药的强度有关,而不影响麻醉药吸收的因素为
关于乳牙牙龈瘘道的描述,以下正确的是
空调设备的自动监控系统中常用的温度传感器有()等类型。
甲、乙因买卖货物发生合同纠纷,甲向人民法院提起诉讼。开庭审理时,乙提出双方已经签订了仲裁协议,应通过仲裁方式解决。根据《仲裁法》的规定,对该案件的下列处理方式中,正确的是()。
应收票据在贴现时,其贴现息应该计入()。
如图7,该学生设计作业属于()。
________是指教师按照其特定的社会地位承担相应的社会角色,并表现出符合社会期望的行为模式。
不管是白天的煤炭还是晚上的煤炭,小明都感觉一样黑。这体现了知觉的()
我市提供了500套住房保障名额给外来务工者,符合资格都可以申请,结果只有100人报名,你认为原因是什么。如何解决?
Theword"open"isreallyusedalot.You’veprobablyheard"openup"inmanywaysovertheyears.Probablymostpeoplewouldli
最新回复
(
0
)