首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)连续,且∫0xtf(2x—t)dt=arctanx2,已知f(1)=0,求∫12f(x)dx.
设函数f(x)连续,且∫0xtf(2x—t)dt=arctanx2,已知f(1)=0,求∫12f(x)dx.
admin
2021-07-05
62
问题
设函数f(x)连续,且∫
0
x
tf(2x—t)dt=
arctanx
2
,已知f(1)=0,求∫
1
2
f(x)dx.
选项
答案
令2x—t=u,dt=—du,则有 [*] 于是 [*] 等式两边对x求导,得 [*] 即 [*] 取x=1,故 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/a9y4777K
0
考研数学二
相关试题推荐
设A=,r(A)=2,则a=_________。
=________.
设A为3阶正交矩阵,它的第一行第一列位置的元素是1,又设β=(1,0,0)T,则方程组AX=β的解为______.
设f(x)在[0,a]上有一阶连续导数,证明至少存在一点ξ∈[0,a],使得∫0af(x)dx=af(0)+f’(ξ)。
设函数f(t)连续,则二重积分dθ∫2cosθ2f(r2)rdr=()
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
设n阶矩阵A的伴随矩阵为A*,证明:|A*|=|A|n一1。
设a1,a2,Β1,Β2为三维列向量组,且a1,a2与Β1,Β1都线性无关。证明:至少存在一个非零向量可同时由a1,a2与Β1,Β2线性表示。
∫(1+sinx)/(1+cosx)dx=________.
(2001年试题,一)设y=e*(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为________________.
随机试题
有4个基金2014年和2015年的分红方案如下:根据这些分红方案,最有可能是封闭式基金的是()。
病人阑尾炎术后1周出现发热,体温38.5℃,伴有里急后重,排便次数6~8次/日,内有黏液。此时。病人处理原则是
A.风水泛滥B.湿毒浸淫C.水湿浸渍D.湿热壅盛E.脾阳虚衰患者水肿日久,腰以下肿甚,按之凹陷不起,畏寒肢冷,尿少。舌淡苔白滑,脉沉弱。其证候是
患儿,10个月。因发热、呕吐、惊厥来就诊。确诊为化脓性脑膜炎。本病最容易出现的并发症为
对样品完整性描述正确的是()。
甲地的刘某和乙地的李某签订了一份购买30台空气净化器的买卖合同,双方约定合同的签订地为丙地。刘某在甲地签字盖章,随后以快递方式将合同邮至乙地,李某在合同上完成签字盖章。合同约定价款为10万元,李某在合同签订后1个月内分三次将空气净化器运输到刘某指定地点丁地
甲公司2017年1月购入一宗土地用于建设厂房,厂房工程于2018年1月完工。甲公司会计账簿中记载的“无形资产一土地使用权”金额为5000万元,“固定资产一厂房”金额为1200万元。当地规定的房产原值减除比例为30%。甲公司没有其他房产,宗地容积率为0.75
甲公司拟投资某项目,一年前花费10万元做过市场调查,因故中止。现重启该项目,拟使用闲置的一间厂房,厂房购入时价格2000万元,当前市价2500万元;项目还需投资500万元购入新设备。在进行该项目投资决策时,初始投资是()万元。
深圳和香港SARS联合攻关小组在2003年5月23日宣布,SARS病毒溯源研究获得重要进展,科研人员成功地对从当地野生动物交易市场中随机抽取的六只果子狸的粪便样本中分离出的SARS样病毒基因进行了全序列测定,分析显示,这种SARS样病毒与人类SARS病毒有
Mymother’sweddingbandmaynothavebeenfancyorexpensive,buttome,itwasapricelessjewel.WhenIwasgrowingup,m
最新回复
(
0
)