首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=2x12-x22+ax32+2x1x2-8x1x3+2x2x3在正交变换x=Oy下的标准型为λ1y12+λ2y22,求a的值及一个正交矩阵Q.
设二次型f(x1,x2,x3)=2x12-x22+ax32+2x1x2-8x1x3+2x2x3在正交变换x=Oy下的标准型为λ1y12+λ2y22,求a的值及一个正交矩阵Q.
admin
2017-02-21
55
问题
设二次型f(x
1
,x
2
,x
3
)=2x
1
2
-x
2
2
+ax
3
2
+2x
1
x
2
-8x
1
x
3
+2x
2
x
3
在正交变换x=Oy下的标准型为λ
1
y
1
2
+λ
2
y
2
2
,求a的值及一个正交矩阵Q.
选项
答案
f(x
1
,x
2
,x
3
)=X
T
AX,其中A=[*] 由于f(x
1
,x
2
,x
3
)=X
T
AX经正交变换后,得到的标准形为λ
1
y
1
2
+λ
2
y
2
2
, 故r(A)=2[*]a=2, 将a=2代入,满足r(A)=2,因此a=2符合题意,此时A=[*],则 |λE-A|=[*]λ
1
=-3,λ
2
=0,λ
3
=6, 由(-3E-A)x=0,可得A的属于特征值-3的特征向量为α
1
=[*] 由(6E-A)x=0,可得A的属于特征值6的特征向量为α
2
=[*] 由(0E-A)x=0,可得A的属于特征值0的特征向量为α
3
=[*] 令P=(α
1
,α
2
,α
3
),则P
-1
AP=[*],由于α
1
,α
2
,α
3
彼此正交,故只需单位化即可: β
1
=[*](1,-1,1)
T
,β
2
=[*](-1,0,1)
T
,β
3
=[*](1,2,1)
T
, 则Q=(β
1
β
2
β
3
)=[*],Q
T
AQ=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/aCt4777K
0
考研数学二
相关试题推荐
证明收敛。
二元函数f(x,y)在点(x0,y0)处两个偏导数f’x(x0,y0),f’y(x0,y0)存在是f(x,y)在该点连续的________。
设y=xsin2x,则dy=________.
微分方程xy’+y=0满足初始条件y(1)=2的特解为________。
某公司每年的工资总额比上一年增加20%的基础上再追加2百万元,若以Wt表示第t年的工资总额(单位:百万元),则Wt满足的差分方程是________。
设y=f(x)为区间[0,1]上的非负连续函数.证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积.
已知质点在时刻t的速度为v=3t-2,且t=0时距离s=5,求此质点的运动方程.
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)=().
(2008年试题,22)设n元线性方程组Ax=b,其中(I)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
5kg肥皂溶于300L水中后,以每分钟10L的速度向内注入清水,同时向外抽出混合均匀的肥皂水,问何时余下的肥皂水中只有1kg肥皂.
随机试题
怎样正确对待人生的顺境和逆境?
忽如一夜春风来,________________。(唐朝·岑参《白雪歌送武判官归京》)
曲线与直线y=x,x=2所围成的平面图形的面积为______。
Whenheappliedfora______intheofficeofthelocalnewspaperhewastoldtoseethemanager.
体温在39℃以上,24小时内波动范围大于2℃,体温最低时仍高于正常,这种热型是
关于贸易技术壁垒(TBT)的基本概念,下列说法错误的是()。
根据以下资料,回答下列小题。货物贸易规模迅速扩大。“十一五”期间,我国货物进出口总额累计116806亿美元,比“十五”期间增长1.6倍。其中,出口总额63997亿美元,增长1.7倍;进口总额52809亿美元,增长1.4倍。5年间,进出口贸易年均增长15.
在CSMA中,决定退让时间的算法为:①如果信道空闲,以户的概率发送,而以(1-p)的概率延迟一个时间单位t;②如果信道忙,继续监听直至信道空闲并重复步骤①;③如果发送延迟了一个时间单位t,则重复步骤①。上述算法为(14)。
单用户数据库管理系统与多用户数据库管理系统之间的最明显的也是最重要的差别是()。
A、There’smuchtodobesidesworkandstudy.B、It’sconvenientforpeopletogoanywhere.C、Thenaturalenvironmentisbeneficia
最新回复
(
0
)