首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内有f(x)>0恒成立且xf’(x)=f(x)+ax2。由曲线y=f(x)与直线x=1,y=0围成的平面图形的面积为2。 求函数y=f(x)的解析式;
设f(x)在[0,1]上连续,在(0,1)内有f(x)>0恒成立且xf’(x)=f(x)+ax2。由曲线y=f(x)与直线x=1,y=0围成的平面图形的面积为2。 求函数y=f(x)的解析式;
admin
2017-01-16
62
问题
设f(x)在[0,1]上连续,在(0,1)内有f(x)>0恒成立且xf’(x)=f(x)+
ax
2
。由曲线y=f(x)与直线x=1,y=0围成的平面图形的面积为2。
求函数y=f(x)的解析式;
选项
答案
将xf’(x)=f(x)+[*]ax
2
变形得f’(x)-[*]ax,这是一阶线性微分方程,由一阶线性微分方程的通解公式得 f(x)=[*]ax
2
+Cx,x∈[0,1]。 由y=f(x)与x=1,y=0围成的平面图形的面积为2可知, 2=∫
0
1
([*]ax
2
+Cx)dx=[*](a+C),即C=4-a, 故 f(x)=[*]ax
2
+(4-a)x。 注意到在(0,1)内需f(x)>0成立,故还需确定a的取值范围。 f(0)=0,f(1)=4+[*] ①当a=0时,f(x)=4x,满足题意; ②当a>0时,函数f(x)开口向上,只需对称轴[*]≤0即可,即0<0≤4; ③当a<0时,函数f(x)开口向下,对称轴[*]>0,只需f(1)≥0,即-8≤a<0; 综上所述,f(x)=[*]ax
2
+(4-a)x且-8≤a≤4。
解析
转载请注明原文地址:https://kaotiyun.com/show/aCu4777K
0
考研数学一
相关试题推荐
求下列有理函数不定积分:
某商场以每件a元的价格出售某种商品,若顾客一次购买50件以上,则超出50件的商品以每件0.8а元的优惠价出售,试将一次成交的销售收入R表示成销售量z的函数.
被积函数的分子与分母同乘以一个适当的因式,往往可以使不定积分容易求,用这种方法求下列不定积分:
已知函数y=sinx的图形,作函数y=2sin﹙2x-π/2﹚的图形.
设f(x)可导,求下列函数的导数:
设曲线方程为y=e-x(x≥0)(1)把曲线y=e-x,x轴,y轴和直线x=ε(ε>0)所谓平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ε),求满足的a;(2)在此曲线上找一点,使过该点的切线与两坐标轴所夹平面图形的面积最大,并求出该面积。
用待定系数法,将下列积分中被积函数的分子设为Af(x)+Bfˊ(x),利用的求法求下列不定积分:
随机试题
痴呆
论述《静静的顿河》的艺术特征。
男,15岁,近1个月每日咳嗽后喘发作,尤其夜间发作,每周3次,肺功能:FEVl70%。选用哪类药物更恰当
小叶性肺炎病变最严重的位置是
滴丸的特点有
麻醉药品和精神药品的监督管理有哪些规定?
110~220kV中性点直接接地电力网中线路后备保护的配置原则包括()。
认为长期债券收益要高于短期债券收益,因为短期债券流动性高,易于变现,而长期债券流动性差的期限结构理论是()
从“又快又好”到“又好又快”,______简单的词序变化,______对当前经济社会发展新形式认识的深化。“快”是对经济发展速度的强调,“好”是对经济发展质量和效益的要求。从“快”字当头到“好”字当头,表明我们更加重视经济发展的质量和效益,把质量和效益放在
在中国近代历史上,帝国主义列强不能灭亡和瓜分中国的最根本原因是()
最新回复
(
0
)