首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cos xdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cos xdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
admin
2019-01-05
89
问题
设函数f(x)在[0,π]上连续,且∫
0
π
f(x)dx=∫
0
π
f(x)cos xdx=0.试证明:在(0,π)内至少存在两个不同的点ξ
1
,ξ
2
,使f(ξ
1
)=f(ξ
2
)=0.
选项
答案
令F(x)=∫
0
x
f(t)dt,0≤x≤π,则有F(0)=0,F(π)=0,又因为 0=∫
0
π
f(x)cosxdx=∫
0
π
cosxdF(x) =F(x)cosx|
0
π
+∫
0
π
F(x)sinxdx =∫
0
π
F(x)sinxdx, 所以存在ξ∈(0,π),使F(ξ)sinξ=0,不然,则在(0,π)内F(x)sinx恒为正或恒为负,与∫
0
π
F(x)sinxdx=0矛盾,但当ξ∈(0,π)时sinξ≠0,故F(ξ)=0. 由以上证得,存在满足0<ξ<π的ξ,使得F(0)=F(ξ)=F(π)=0. 再对F(x)在区间[0,ξ],[ξ,π]上分别用罗尔定理知,至少存在ξ
1
∈(0,ξ),ξ
2
∈(ξ,π),使得F’(ξ
1
)=F’(ξ
2
)=0,即f(ξ
1
)=f(ξ
2
)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/aZW4777K
0
考研数学三
相关试题推荐
设un(x)满足的和函数.
设f(x)∈c[a,b],在(a,b)内二阶可导.若f(A)=f(B)=∫0bf(x)dx=0,证明:存在η∈(a,b),使得f’’(η)=f(η).
设f(x)在[0,1]上连续可导,f(1)=0,∫01xf’(x)dx=2,证明:存在ξ∈[0,1],使得f’(ξ)=4.
设A是三阶矩阵,α1,α2,α3为三维列向量且α1≠0,若Aα1=α1,Aα2=α1+α2,Aα3=α2+α3.证明:向量组α1,α2,α3线性无关.
设f(x)在[a,b]上连续,在(a,b)内可导.证明:存在ξ,η∈(a,b),使得
设某工厂生产甲、乙两种产品,当这两种产品的产量分别为q1(吨)与q2(吨)时,总收入函数为R(q1,q2)=15q1+34q2—q12一4q22一2q1q2—36(万元),设生产1吨甲产品要支付排污费1万元,生产1吨乙产品要支付排污费2万元。当排污费总
随机试题
唇腭裂可给患者造成
男性,67岁,因不慎跌倒导致闭合性胸部损伤,胸片显示多根多处肋骨骨折。该病例发生呼吸衰竭的主要原因是
最容易导致上肢缺血性肌挛缩的骨折是
毒性较小的酯类麻药是血管收缩剂是
羟丙基纤维素羟丙基甲基纤维素
对热电厂供热系统来说,以下说法错误的是()。
根据我国相关规定,下列各项中属于造价工程师权利的是( )(注:按新的《注册造价工程师管理办法》答题)。
证券交易所、证券公司和证券登记结算机构的从业人员、证券监督管理机构的工作人员以及法律、行政法规禁止参与股票交易的其他人员,在任期或者法定期限内,不得直接或者以化名、借他人名义持有、买卖股票,也不得收受他人赠送的股票。()
下列协议中,可以适用《中华人民共和国合同法》的有()。
以下是一份商用测谎器的广告:员工诚实的个人品质,对于一个企业来说至关重要。一种新型的商用测谎器,可以有效地帮助贵公司聘用诚实的员工。著名的QQQ公司在一次招聘面试中使用了测谎器,结果完全有理由让人相信它的有效功能。有三分之一的应聘者在这次面试中撒
最新回复
(
0
)