首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cos xdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cos xdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
admin
2019-01-05
88
问题
设函数f(x)在[0,π]上连续,且∫
0
π
f(x)dx=∫
0
π
f(x)cos xdx=0.试证明:在(0,π)内至少存在两个不同的点ξ
1
,ξ
2
,使f(ξ
1
)=f(ξ
2
)=0.
选项
答案
令F(x)=∫
0
x
f(t)dt,0≤x≤π,则有F(0)=0,F(π)=0,又因为 0=∫
0
π
f(x)cosxdx=∫
0
π
cosxdF(x) =F(x)cosx|
0
π
+∫
0
π
F(x)sinxdx =∫
0
π
F(x)sinxdx, 所以存在ξ∈(0,π),使F(ξ)sinξ=0,不然,则在(0,π)内F(x)sinx恒为正或恒为负,与∫
0
π
F(x)sinxdx=0矛盾,但当ξ∈(0,π)时sinξ≠0,故F(ξ)=0. 由以上证得,存在满足0<ξ<π的ξ,使得F(0)=F(ξ)=F(π)=0. 再对F(x)在区间[0,ξ],[ξ,π]上分别用罗尔定理知,至少存在ξ
1
∈(0,ξ),ξ
2
∈(ξ,π),使得F’(ξ
1
)=F’(ξ
2
)=0,即f(ξ
1
)=f(ξ
2
)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/aZW4777K
0
考研数学三
相关试题推荐
设A为m×n矩阵,且.证明方程组AX=b有且仅有n一r+1个线性无关解;
求幂级数的收敛区域与和函数.
设un(x)满足的和函数.
设f(x)∈c[a,b],在(a,b)内二阶可导.若f(A)=f(B)=∫0bf(x)dx=0,证明:存在η∈(a,b),使得f’’(η)=f(η).
求幂级数的收敛半径、收敛域及和函数,并求
设A是三阶矩阵,α1,α2,α3为三维列向量且α1≠0,若Aα1=α1,Aα2=α1+α2,Aα3=α2+α3.证明:A不可相似对角化.
设A是三阶矩阵,α1,α2,α3为三维列向量且α1≠0,若Aα1=α1,Aα2=α1+α2,Aα3=α2+α3.证明:向量组α1,α2,α3线性无关.
设f(x)在[a,b]上连续,在(a,b)内可导.证明:存在ξ,η∈(a,b),使得
设某工厂生产甲、乙两种产品,当这两种产品的产量分别为q1(吨)与q2(吨)时,总收入函数为R(q1,q2)=15q1+34q2—q12一4q22一2q1q2—36(万元),设生产1吨甲产品要支付排污费1万元,生产1吨乙产品要支付排污费2万元。当排污费总
随机试题
患儿男,8个月。发热、咳嗽4天,加重伴气促2天,精神不振,食欲减退。查体:体温37.9℃,呼吸46次/分,咽部充血,双肺可闻及哮鸣音,心率140次/分,肝脏肋下1.0cm,血常规WBC8.2×109/L,L0.72,胸片示两肺可见小点片状阴影,伴肺气肿。
张某,男,40岁,因恶心呕吐、停止排便排气1日入院,表现为口渴、尿少、眼球下陷、脉速、血压为90/60mmHg,请估计其缺水性质和程度()。
A.解表清里,化痰平喘B.清热化痰,宣肺平喘C.扶阳固脱,镇摄肾气D.补肾纳气喘证虚喘脱证的治法宜选用
安装人工心脏起搏器后多长时间就可以下床活动()
对该病例首先考虑为进一步确诊,首先选用
女,40岁。发现颈部肿大6年,近半年来常感心悸,多汗,食量加大,查体:无突眼、甲状腺Ⅱ度肿大、结节状,脉搏116次/分,心、肺、腹无异常发现,其诊断可能是
所有可能积累粉尘的生产车间和储存室,都应()清扫。
下列选项中,关于留置的说法错误的是()。
古人说:“操千曲而后晓声,观千剑而后识器。”从哲学上来看,这里主要强调的是()。
G系数提供各种测验方案下的测验误差估计值,是衡量常模参照性测验质量的
最新回复
(
0
)