设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,0≤f’(x)≤1,求证:[∫01(x)dx]2≥∫01f3(x)dx.

admin2016-11-28  20

问题 设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,0≤f’(x)≤1,求证:[∫01(x)dx]2≥∫01f3(x)dx.

选项

答案首先证明不等式[∫0x(t)dt]2≥∫0xf3(t)dt(0≤x≤1).令F(x)=[∫0xf(t)dt]2一∫0xf3(t)dt,F’(x)=2∫0xf(t)dt.f(x)一f3(x)=f(x)[2∫0xf(t)dt一f2(x)],再令φ(x)=2∫0xf(t)dt一f2(x)则φ’(x)=2f(x)一2f(x)f’(x)=2f(x)[1一f’(x)].因为f(0)=0,f’(x)≥0,所以f(x)单增,当x≥0时,f(x)≥f(0)=0.又0≤f’(x)≤1,于是φ’(x)≥0,由此φ(x)单增,当x≥0时,φ(x)≥φ(0)=0,所以又有F’(x)≥0,由此F(x)单增,当x≥0时,F(x)≥F(0)=0,故F(1)≥0,从而有[∫01f(x)dx]2≥∫01f2(x)dx.

解析
转载请注明原文地址:https://kaotiyun.com/show/ahhC777K
本试题收录于: 数学题库普高专升本分类
0

最新回复(0)