首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且fˊ(x)>0.若极限存在,证明: 在(a,b)内存在与(Ⅱ)中ξ相异的点η,使fˊ(η(b2-a2)=.
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且fˊ(x)>0.若极限存在,证明: 在(a,b)内存在与(Ⅱ)中ξ相异的点η,使fˊ(η(b2-a2)=.
admin
2016-04-29
73
问题
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且fˊ(x)>0.若极限
存在,证明:
在(a,b)内存在与(Ⅱ)中ξ相异的点η,使fˊ(η(b
2
-a
2
)=
.
选项
答案
因f(ξ)= f(ξ)-0= f(ξ)-f(a),在[a,ξ]上应用拉格朗日中值定理, 知在(a,ξ)内存在一点η,使f(ξ)=fˊ(η)(ξ-a), 从而由(Ⅱ)的结论得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/b1T4777K
0
考研数学三
相关试题推荐
人类对自然界的全部“统治”力量在于()。
1956年4月,在经过大量调查研究的基础上,毛泽东作了《论十大关系》的重要讲话,围绕把国内外一切积极因素都调动起来为社会主义事业服务的基本方针,深刻论述了正确处理经济建设和社会发展中的一系列重大关系。其中正确处理的第一大关系是()。
这次疫情,对产业发展既是挑战也是机遇,一些传统行业受冲击较大,而智能制造、无人配送、在线消费、医疗健康等新兴产业展现出强大成长潜力,网络购物、生鲜电商、在线教育、远程问诊、远程办公等新兴服务业态快速扩张,一些技术含量高的产品产量也逆势增长。这里当然有需求拉
二次型f(x1,x2,x3)=x12+4x22+3x32-4x1x2+2x1x3+8x2x3的秩等于()。
已知二次型f(x1,x2,x3)的矩阵A有三个特征值1,-1,2,该二次型的规范形为________.
设f(x)为连续函数,.则Fˊ(2)等于()
指出当x→0时,下列函数的等价无穷小是哪个?
设f(x)为正值连接函数,f(0)=1,且对任一x>0,曲线y=f(x)在区间[0,x]上的一段弧长等于此弧段下曲边梯形的面积,求此曲线方程.
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
假设某企业在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别是p1=18-2Q1,p2=12-Q2,其中p1和p2分别表示该产品在两个市场的价格(单位:万元/吨),Q1和Q2分别表示该产品在两个市场的销售量(即需求量,单位:吨
随机试题
已知由∫0yet2dt=∫0x2costdt+cosy2确定y是x的函数,求dy.
症见精神抑郁,情绪不宁,胸部满闷,胁肋胀痛,痛无定处,脘闷嗳气,不思饮食,大便不调,苔薄腻,脉弦,其治法为
A.雌激素B.孕激素C.前列腺素D.黄体生成素E.雄激素使子宫肌层对催产素敏感性降低的是
黄先生,30岁,5天前右脚曾被钉子扎伤,未经处理,近日出现遇光及听到声响后牙关紧闭,角弓反张等症状,诊断为破伤风破伤风发病时,最先出现的症状是
A.暂时性面瘫B.翼静脉丛血肿C.恶心、干呕D.瞳孔缩小E.颌后区血肿以下麻醉最易引起的相应并发症下牙槽神经阻滞麻醉
麻疹早期最有特殊意义的是
锚杆支护与锚喷支护是矿山井巷支护的两种方式。锚杆支护是单独采用锚杆的支护,而锚喷支护是联合使用锚杆和喷射混凝土或()的支护。
公安工作在战略战役部署与实施上,在法制与政策的结合上,在多部门横向协同上,要高度统一,又要注意适当分散。( )
下列不属于中法战争战役的是()。
马克思主义新世界观创立的关键在于马克思确定了( )
最新回复
(
0
)