首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,如对任何n维向量b方程组Ax=b总有解,证明方程组A*x=b必有唯一解.
设A是n阶矩阵,如对任何n维向量b方程组Ax=b总有解,证明方程组A*x=b必有唯一解.
admin
2016-10-20
73
问题
设A是n阶矩阵,如对任何n维向量b方程组Ax=b总有解,证明方程组A
*
x=b必有唯一解.
选项
答案
记A=(α
1
,α
2
,…,α
n
),因为对任一个n维向量b,方程组x
1
α
1
+x
2
α
2
+…+x
n
α
n
=b总有解,那么α
1
,α
2
,…,α
n
可以表示任一个n维向量.因此,α
1
,α
2
,…,α
n
可以表示n维单位向量ε
1
=(1,0,0,…,0)
T
,ε
2
=(0,1,0,…,0)
T
,…,ε
n
=(0,0,0,…,1)
T
.从而向量组α
1
,α
2
,…,α
n
与ε
1
,ε
2
,…,ε
n
等价,所以秩r(α
1
,α
2
,…,α
n
)=n,即有|A|≠0.于是|A
*
|=|A|
n-1
≠0.由克莱姆法则可知A
*
x=b有唯一解.
解析
转载请注明原文地址:https://kaotiyun.com/show/bZT4777K
0
考研数学三
相关试题推荐
[*]
A、 B、 C、 D、 B
有k个坛子,每一个装有n个球,分别编号为1至n,今从每个坛子中任取一球,求m是所取的球中的最大编号的概率.
设A是n×m矩阵,B是m×n矩阵,其中n
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
如果n个事件A1,A2,…,An相互独立,证明:
计算高斯积分其中,r=(x,xo)i+(y-yo)j+(z-zo)k,r=|r|,n是封闭曲面∑的外法向量,点Mo(xo,yo,zo)是定点,点M(x,y,z)是动点,研究两种情况:(1)Mo在∑的外部;(2)Mo在∑的内部.
证明:函数f(x)=1/xsin1/x在区间(0,1]内无界,但当x→0+时这个函数不是无穷大.
设F1(x)与F2(x)分别为随机变量,X1与X2的分布函数,为使F(x)=aF1(x)-bF2(x)是某一随机变量的分布函数,在下列给定的各组数值中应取().
设随机变量X服从正态分布N(μ1,σ12),随机变量y服从正态分布N(μ2,σ22),且P{|X-μ1|<1}>P{|Y-μ2|<1},则必有().
随机试题
试述反不正当竞争法的基本原则。
肝炎病人分娩后的母乳喂养指征是()
患者,女性,50岁,右侧上颌缺失第一前磨牙、第一磨牙和第二磨牙。左侧上颌缺失侧切牙。在这种情况下患者的咀嚼运动类型为
N-亚硝基化合物的合成场所是
A、伪麻黄碱B、3%硼酸乙醇C、赛洛唑啉D、2%酚甘油E、红霉素慢性外耳道炎时局部滴用,促使耳道干燥,可选用
根据《专利法》的有关规定,下列四种情况中可授予专利权的是()。
给定资料1.书,是人类文明的成果;读书是文明人的内在需求,而且始终与人类文明实践及进程相伴随。1995年,联合国教科文组织将每年的4月23日确定为“世界读书日”。其主旨是“希望散居在全球各地的人们,无论你是年老还是年轻,无论你是贫穷还是富有,无论你是患病
Thefirstmanwhocookedhisfood,insteadofeatingitraw,livedsolongagothatwehavenoideawhohewasorwherehelived
WhatarethechallengesfacingmultinationalsthatwanttobuildtheirbrandsinChina?—Ithinkthefirstthingisignorance.T
A、Thelackoftime.B、Thequalityoflife.C、Thefrustrationsatwork.D、Thepressureonworkingfamilies.A本题是细节题。短文开头提到,像大多数上班
最新回复
(
0
)