首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32. 求A-1的特征值并判断A-1是否可对角化.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32. 求A-1的特征值并判断A-1是否可对角化.
admin
2017-09-15
65
问题
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A
*
)
2
-4E的特征值为0,5,32.
求A
-1
的特征值并判断A
-1
是否可对角化.
选项
答案
设A的三个特征值为λ
1
,λ
2
,λ
3
,因为B=(A
*
)
2
-4E的三个特征值为0,5,32,所以(A
*
)
2
的三个特征值为4.9.36,于是的三个特征值为2.3.6. 又因为|A
*
|=36=|A|
3-1
,所以|A|=6. 由[*],得λ
1
=3,λ
2
=2,λ
3
=1, 由于一对逆矩阵的特征值互为倒数,所以A
-1
的特征值为1,[*]. 因为A
-1
的特征值都是单值,所以A
-1
可以相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/cBk4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 A
[*]
设A,B为同阶可逆矩阵,则().
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求A的属于特征值3的特征向量.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A的特征值与特征向量;
设矩阵A与B相似,且求a,b的值;
(2004年试题,三(9))设矩阵的特征方程有一个二重根,求口的值,并讨论A是否可相似对角化.
若矩阵相似于对角阵A,试确定常数a的值;并求可逆矩阵P使P-1AP=A.
随机试题
“一国两制”不符合马克思主义国家学说,会改变我国社会主义的主体地位。
《素问.上古天真论》“恬恢虚无”指的是
以下关于加速实验法的描述正确的是
下列血栓形成条件的叙述,不正确的是
背中央2~4行鳞片强烈起棱,脊部高耸成屋脊状的药材是
如图6—1—14所示圆柱体的直径d=2m,左侧水深h1=2m,右侧水深h2=1m,则该圆柱体单位长度所受到的静水总压力的水平分力和铅垂分力分别为()。
下列朝代,根据原来的部族、部落联盟的名称定国名的有()
现代意义上第一个独立的、职能化的人事行政管理机构产生于()。
某企业为了构建网络办公环境,每位员工使用的计算机上应当具备()设备。
A、 B、 C、 B图片为收银台,A是付款10美元,B是付款20美元,C是付款30美元。
最新回复
(
0
)