首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32. 求A-1的特征值并判断A-1是否可对角化.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32. 求A-1的特征值并判断A-1是否可对角化.
admin
2017-09-15
63
问题
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A
*
)
2
-4E的特征值为0,5,32.
求A
-1
的特征值并判断A
-1
是否可对角化.
选项
答案
设A的三个特征值为λ
1
,λ
2
,λ
3
,因为B=(A
*
)
2
-4E的三个特征值为0,5,32,所以(A
*
)
2
的三个特征值为4.9.36,于是的三个特征值为2.3.6. 又因为|A
*
|=36=|A|
3-1
,所以|A|=6. 由[*],得λ
1
=3,λ
2
=2,λ
3
=1, 由于一对逆矩阵的特征值互为倒数,所以A
-1
的特征值为1,[*]. 因为A
-1
的特征值都是单值,所以A
-1
可以相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/cBk4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 C
[*]
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>O,令μn=f(n)(n=1,2,…),则下列结论正确的是
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.求A的全部特征值;
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求矩阵A.
n阶方阵A具有n个不同的特征值是A与对角阵相似的().
若矩阵相似于对角阵A,试确定常数a的值;并求可逆矩阵P使P-1AP=A.
随机试题
(2013年4月,2010年10月,2009年10月,2009年4月)1956年,陈云在中共八大上提出了________的思想。
Conversationbeginsalmostthemomentwecomeintocontactwithanotherandcontinuesthroughouttheday【C1】______theaidofcel
Yettheseglobaltrendshidestarklydifferentnationalandregionalstories.VittorioColao,thebossofVodafone,whichoperat
为得到高信噪比的图像,应选择
健康是身体上、_______和_______的完好状态,而不仅是没有疾病和虚弱。
下列对疾病定义的描述中,不正确的是
A.罚款B.责令改正C.通报批评D.吊销执业证书E.暂停执业活动医师判断患者为非正常死亡但未按照规定报告,应给予的行政处罚是()
属于物业管理企业运行机制的是()。
在企业中,出于内源性动机的员工着重的是( )。
Thispassagegivesageneraldescriptionofwhyrecessionsoccurandhowtheymakeacountry’seconomyworse.Thevalueofgood
最新回复
(
0
)