首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(u)具有二阶连续导数,z=f(excosy)满足=(4z+excosy)e2x,若f(0)=0,f’(0)=0,求f(u)的表达式。
设函数f(u)具有二阶连续导数,z=f(excosy)满足=(4z+excosy)e2x,若f(0)=0,f’(0)=0,求f(u)的表达式。
admin
2018-04-14
69
问题
设函数f(u)具有二阶连续导数,z=f(e
x
cosy)满足
=(4z+e
x
cosy)e
2x
,若f(0)=0,f’(0)=0,求f(u)的表达式。
选项
答案
设u=e
x
cosy,则z=f(u)=f(e
x
cosy),分别对x,y求导得 [*] =f"(u)e
2x
cos
2
y+f’(u)e
x
cosy, [*] =f"(u)e
2x
sin
2
y-f’(u)e
x
cosy, 则 [*]=f"(u)e
2x
=f"(e
x
cosy)e
2x
。 由已知条件[*]=(4z+e
x
cosy)e
2x
,可知f"(u)=4f(u)+u。这是一个二阶常系数非齐次线性微分方程。 对应齐次方程的通解为 f(u)=C
1
e
2u
+C
2
e
-2u
,其中C
1
,C
2
为任意常数。 设非齐次方程的特解为y
*
=ax+b,代入可得a=-1/4,b=0。 对应非齐次方程特解为y
*
=-1/4u。故非齐次方程通解为f(u)=C
1
e
2u
+C
2
e
-2u
-[*]u。 将初始条件f(0)=0,f’(0)=0代入,可得C
1
=1/16,C
2
=-1/16,所以f(u)的表达式为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/cRk4777K
0
考研数学二
相关试题推荐
A、a=b或a+2b=0B、a=b或a+2b≠0C、a≠b且a+2b=0D、a≠b且a+2b≠0C
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+a(x),其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=(x)在点(6,f(6))处的切线方程.
[*]
已知y=x/lnx是微分方程y’=y/x+φ(x/y)的解,则φ(x/y)的表达式为
设,(u,v)是二元可微函数,。
求微分方程y’=y(1-x)/x的通解。
f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3—2x2x3.若二次型f的规范形为y12+y22,求a的值.
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;(2)证明在[-a,a]上至少存在一点η,使a3f"(η)=3∫-aaf(x)dx.
因为x→0+时,[*]所以[*]注解该题考查等价无穷小求极限的方法,当x→0常用的等价无穷小有:(1)x~sinx~tanx~arcsinx~arctanx~ex-1~ln(1+x);(2)1-cosx~,1-cosax~(3)(1+x)a-1~a
随机试题
Wedon’tunderstandhowthemanagercouldtrytoescapehis______.
门静脉高压症时,受影响最早、最易曲张出血的侧支血管是
哪种情况可见到尿比重增高
患者,男,50岁。肥胖。大量饮酒后,出现躅趾与跖趾关节剧痛伴红、肿、热1天。首先考虑的疾病是
A、哌替啶B、喷他佐辛C、美沙酮D、纳洛酮E、吲哚美辛镇痛强度为吗啡的1/10,可代替吗啡使用的药物是
关于法律职业道德,下列哪一表述是不正确的?(2013年卷一第45题)
工程保险合同的内容较为复杂,工程保险合同谈判常常耗费较多的时间和精力,尤以保险费的谈判为甚,这是因为保险费( )。
在贷款或融资活动进行时,贷款者和借款者并不能自由地在利率预期的基础上将证券从一个偿还期部分替换成另一个偿还期部分,或者说市场是低效的。这是()观点。
F公司是一家餐饮连锁上市公司。为在首都机场开设一个新门店,参加机场内一处商铺的租约竞标。出租方要求,租约合同为期5年,不再续约,租金在合同生效时一次付清。相关资料如下:(1)F公司目前股价40元/股,流通在外的普通股股数为2500万股。债务市值600
小班幼儿玩橡皮泥时,往往没有计划性。橡皮泥搓成团就说是包子,搓成条就说是油条,长条橡皮泥卷起来就说是麻花。这反映了小班幼儿()。
最新回复
(
0
)