首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(u)具有二阶连续导数,z=f(excosy)满足=(4z+excosy)e2x,若f(0)=0,f’(0)=0,求f(u)的表达式。
设函数f(u)具有二阶连续导数,z=f(excosy)满足=(4z+excosy)e2x,若f(0)=0,f’(0)=0,求f(u)的表达式。
admin
2018-04-14
81
问题
设函数f(u)具有二阶连续导数,z=f(e
x
cosy)满足
=(4z+e
x
cosy)e
2x
,若f(0)=0,f’(0)=0,求f(u)的表达式。
选项
答案
设u=e
x
cosy,则z=f(u)=f(e
x
cosy),分别对x,y求导得 [*] =f"(u)e
2x
cos
2
y+f’(u)e
x
cosy, [*] =f"(u)e
2x
sin
2
y-f’(u)e
x
cosy, 则 [*]=f"(u)e
2x
=f"(e
x
cosy)e
2x
。 由已知条件[*]=(4z+e
x
cosy)e
2x
,可知f"(u)=4f(u)+u。这是一个二阶常系数非齐次线性微分方程。 对应齐次方程的通解为 f(u)=C
1
e
2u
+C
2
e
-2u
,其中C
1
,C
2
为任意常数。 设非齐次方程的特解为y
*
=ax+b,代入可得a=-1/4,b=0。 对应非齐次方程特解为y
*
=-1/4u。故非齐次方程通解为f(u)=C
1
e
2u
+C
2
e
-2u
-[*]u。 将初始条件f(0)=0,f’(0)=0代入,可得C
1
=1/16,C
2
=-1/16,所以f(u)的表达式为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/cRk4777K
0
考研数学二
相关试题推荐
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.问k为何值时,f(x)在x=0处可导.
[*]
设sOy,平面上有正方形D={(x,y)|0≤x≤1,0≤y≤1}及直线l:x+y=t(t≥0).若S(t)表示正方形D位于直线l左下方部分的面积,试求
设二元函数z=xex+y+(x+1)ln(1+y),求dz|(1,0)。
二元函数f(x,y)在点(0,0)处可微的一个充分条件是
设f(x)是连续函数,F(x)是f(x)的原函数,则
设曲线y=ax2(a>0,x≥0)与y=1-x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形.问a为何值时,该图形绕x轴旋转一周所得的旋转体体积最大?最大体积是多少?
求微分方程ydx+(x-3y2)dx=0满足条件y|x=1=1的解y。
y=2x的麦克劳林公式中xn项的系数是_________.
随机试题
呆小病佝偻病
红细胞相对增多红细胞代偿性增多
低渗性缺水引起血压下降的主要原因是
在一次选举中,统计显示,有人投了所有候选人的赞成票。如果统计是真实的,那么下列哪项也必定是真实的?
(2009年单选47)甲立有遗嘱,其内容为自己死后遗产全部由独生子乙继承。在一次车祸中甲乙同时遇难,甲当场死亡,乙在送往医院的途中死亡。乙的儿子丙依甲的遗嘱继承了甲的全部遗产。丙继承甲遗产的方式是()。
APEC
有下列二叉树,对此二叉树中序遍历的结果为()。
在冯.诺依曼型体系结构的计算机中引进了两个重要概念,一个是二进制,另外一个是()。
【B1】【B8】
Whatshouldemployeesdoifabadgeislost?
最新回复
(
0
)