首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4都是3维非零向量,则下列命题中错误的是
设α1,α2,α3,α4都是3维非零向量,则下列命题中错误的是
admin
2016-07-21
52
问题
设α
1
,α
2
,α
3
,α
4
都是3维非零向量,则下列命题中错误的是
选项
A、如果α
4
不能用α
1
,α
2
,α
3
线性表示,则α
1
,α
2
,α
3
线性相关.
B、如果α
1
,α
2
,α
3
线性相关,α
2
,α
3
,α
4
线性相关,则α
1
,α
2
,α
4
线性相关.
C、如果α
3
不能用α
1
,α
2
线性表示,α
4
不能用α
2
,α
3
线性表示,则α
1
能用α
2
,α
3
,α
4
线性表示.
D、 如果r(α
1
,α
1
+α
2
,α
2
+α
3
)=r(α
4
,α
1
+α
4
,α
2
+α
4
,α
3
+α
4
),则α
4
能用α
1
,α
2
,α
3
线性表示.
答案
B
解析
只要α
2
,α
3
线性相关,就有α
1
,α
2
,α
3
和α
2
,α
3
,α
4
都线性相关,但推不出α
1
,α
2
,α
4
线性相关.例如α
1
=(1,0,0),α
2
=α
3
=(0,1,0),α
4
=(0,0,1).说明A,C的正确都可根据同一事实:如果3个3维向量线性无关,则任何3维向量都可以用它们线性表示.A是其逆否命题.C:α
2
是非零向量,α
3
不能用α
2
线性表示(因为α
3
不能用α
1
,α
2
线性表示),则α
2
,α
3
线性无关.而α
4
不能用α
2
,α
3
线性表示,α
2
,α
3
,α
4
线性无关.D:r(α
1
,α
2
,α
3
)=r(α
1
,α
1
+α
2
,α
2
+α
3
) =r(α
4
,α
1
+α
4
,α
2
+α
4
,α
3
+α
4
)=r(α
4
,α
1
,α
2
,α
3
),因此α
4
能用α
1
,α
2
,α
3
线性表示.
转载请注明原文地址:https://kaotiyun.com/show/ccbD777K
0
考研数学二
相关试题推荐
2000年、2005年、2006年发达国家、发展中国家和世界总体的国际储备(不包括黄金)和黄金储备变化情况,如图所示:部分国家国际储备和黄金储备的变化情况如下表所示:2000年到2006年黄金储备量下降幅度超过11%的国家有多少个?()
压强:面积()
能直接证明门捷列夫元素周期表理论正确的是(,)。
如图所示,两个半圆与一个四分之一圆叠放,问图中阴影a、b的面积比为多少?
设F(x,y)在点(x0,y0)某邻域有连续的偏导数,F(x0,y0)=0,则F’y(x0,y0)≠0是F(x,y)=0在点(x0,y0)某邻域能确定一个连续函数y=y(x),它满足y0=y(x0),并有连续的导数的_________条件.
n维向量组(Ⅰ):α1,α2,…,αs和向量组Ⅱ:β1,β2,…,βs等价的充分必要条件是
设极坐标系下的累次积分I=(rcosθ,rsinθ)rdθ,将I写成先对r后对θ的累次积分,则________.
设正数列{an}满足=________.
已知A是3阶矩阵,ai(i=1,2,3)是3维非零列向量,若Aai=iai(i=1,2,3),令α=α1+α2+α3。(Ⅰ)证明:α,Aα,A2α线性无关;(Ⅱ)设P=(α,Aα,A2α),求P—1AP.
设曲线y=y(x)(x>0)是微分方程2yˊˊ+yˊ-y=(4-6x)e-x的一个特解,此曲线经过原点且在原点处的切线平行于x轴.求曲线y=y(x)到x轴的最大距离;
随机试题
追惟一二,仿佛如昨
某男,5岁。突发高热、呕吐、惊厥,数小时后出现面色苍白、四肢厥冷、脉搏细数、血压下降至休克水平。经实验室检查诊断为暴发型流脑所致感染中毒性休克,应采取的抗休克药物为
下列关于劳动争议处理的说法,错误的是( )。
某企业当年有生产职工为200人,当地政府确定人均月计税工作标准是800元,该企业当年发放的工资总额是210万元,该企业在计算应纳税所得额时,准予扣除的职工工会经费、职工福利费、职工教育费共()。
甲、乙、丙三方合作研发一项新技术,合作开发合同中未约定该技术成果的权利归属。新技术研发成功后,乙、丙提出申请专利,甲不同意。根据《合同法》的规定,下列关于专利申请的表述中,正确的是()。
下列关于契税的陈述,正确的有()。
如图,平行四边形ABCD中,∠DAB=60°,AB=2,AD=4,将△CBD沿BD折起到△EBD的位置,使平面EDB⊥平面ABD。求证:AB⊥DE;
资本主义土地私有制的特点不包括()。
在完全竞争的条件下,市场均衡意味着资源的最佳配置,而打破市场均衡的可能原因有()。
A、Returnthebikesbacktothesamepick-uppoint.B、Usethebikeforashortorlongtrip.C、Swipetheirordinarytravelcards
最新回复
(
0
)