首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αk(k<n)是Rn中k个线性无关的列向量。证明:存在n阶满秩方阵P,使得P以α1,α2,…,αk为其前k列。
设α1,α2,…,αk(k<n)是Rn中k个线性无关的列向量。证明:存在n阶满秩方阵P,使得P以α1,α2,…,αk为其前k列。
admin
2015-09-14
28
问题
设α
1
,α
2
,…,α
k
(k<n)是R
n
中k个线性无关的列向量。证明:存在n阶满秩方阵P,使得P以α
1
,α
2
,…,α
k
为其前k列。
选项
答案
取齐次线性方程组[*]的基础解系ξ
1
,…,ξ
n-k
,则可证明α
1
,…,α
k
,ξ
1
,…,ξ
n-k
线性无关:设λ
1
α
1
+…+λ
k
α
k
+μ
1
ξ
1
+…+μ
n-k
ξ
n-k
=0,两端左乘(λ
1
α
1
+…+λ
k
α
k
)T,并利用α
i
T
ξ
i
=0(i=1,…,k;j=1,…,n一k),得(λ
1
α
1
+…+λ
k
α
k
)
T
(λ
1
α
1
+…+λ
k
α
k
)=0,即||λ
1
α
1
+…+λ
k
α
k
||=0,[*]λ
1
α
1
+…+λ
k
α
k
=0,而α
1
,…,α
k
线性无关,[*]λ
1
=…=λ
k
=0,[*]μ
1
ξ
1
+…+μ
n-k
ξ
n-k
=0,又ξ
1
,…,ξ
n-k
线性无关,[*]μ
1
=…=μ
n-k
=0,于是证得α
1
,…,α
k
,ξ
1
,…,ξ
n-k
线性无关,令矩阵P=[α
1
…α
k
ξ
1
…ξ
n-k
],则P为满秩方阵,且以α
1
,…,α
k
为其前k列。
解析
转载请注明原文地址:https://kaotiyun.com/show/ceU4777K
0
考研数学三
相关试题推荐
居里夫人在做盐铀实验时,发现了一种与盐铀放射性接近,但化学性质却完全不同的未知元素。后来,她通过大量矿石放射性的实验证明这种未知元素的存在,又经过三年多的实验,她终于提炼出了这种新元素并将它命名为“镭”。镭的发现引起科学和哲学的巨大变革,为人类探索原子世界
时代精神是一个国家和民族在新的历史条件下形成和发展的,是体现民族特质并顺应时代潮流的思想观念、价值取向、精神风貌和社会风尚的总和,是一种对社会发展具有积极影响和推动作用的集体意识。时代精神的核心是
与封建社会相比,资本主义显示了巨大的历史进步性,它将科学技术转变为强大的生产力,推动了社会生产力的迅速发展。然而,资本主义的历史进步性并不能掩盖其自身的局限性。这种局限性表现在
迄今为止,人类社会先后经历了五种基本社会形态,与此相适应,出现了道德发展的五种历史类型,即原始社会的道德、奴隶社会的道德、封建社会的道德、资本主义社会的道德、社会主义社会的道德。下列关于道德发展历史类型的正确认识是
人类要生存繁衍、追求美好生活、获得自身的解放和发展,首先必须解决衣食住行等物质生活资料问题。马克思认为,人类第一个历史活动就是生产满足这些需要的物质资料,生产力是人类社会生活和全部历史的基础。下列说法正确的是
当前,我国科技创新仍存在行政干预过多、科研项目和经费管理相关规章制度不够合理、科技成果向现实生产力转化不畅等问题。因此,加速我国科技创新步伐需要()。
发展是前进上升的运动,发展的实质是新事物的产生和旧事物的灭亡。下列选项中,体现发展的实质的有()。
在利用古典概型计算概率时,选择正确的样本空间是关键.比如,考虑一个投掷两枚均匀硬币的试验,其样本空间可以有两种表示.(1)如果在试验中没有区分这两枚硬币,也许是因为这两枚硬币完全相同,并且将两枚硬币同时投掷;或者是因为我们观察投掷结果时并不关心哪
设齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均足Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③符Ax=0与Bx=0同解,则秩(A)
设随机变量X1,X2,…,Xn相互独立,Sn=X1+X2+…+Xn,则根据列维.林德伯格(Levy-Lindherg)中心极限定理,当n充分大时,Sn近似服从正态分布,只要X1,X2,…,Xn
随机试题
理发店对一些头癣等皮肤传染病顾客应采取的处理措施是()
具有"离、合、出、人"循行特点的是
下列哪项是需要家庭参与的第三级预防?()
合同缔约谈判的工作内容包括()。
艾森克的人格理论和古希腊的“四体液说”相互吻合,与内倾一稳定特质相对应的气质类型是()。[2009年真题]
R公司从事木材加工、贸易业务。负责对R公司存货进行监盘的A注册会计师在具体审计计划中列示了以下内容,其中项目合伙人认可的有()。
故宫三大殿和孔庙大成殿均采用单层须弥座。()
1992年,海峡两岸关系协会与台湾海峡交流基金达成各自以口头方式表述“九二共识”,在此基础上开启了两岸事务性商谈。“九二共识”的内容是()
Whatisthemangoingtodotonight?
Wemaylookattheworldaroundus,butsomehowwemanagenottoseeituntilwhateverwe’vebecomeusedtosuddenlydisappears.
最新回复
(
0
)