首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αk(k<n)是Rn中k个线性无关的列向量。证明:存在n阶满秩方阵P,使得P以α1,α2,…,αk为其前k列。
设α1,α2,…,αk(k<n)是Rn中k个线性无关的列向量。证明:存在n阶满秩方阵P,使得P以α1,α2,…,αk为其前k列。
admin
2015-09-14
38
问题
设α
1
,α
2
,…,α
k
(k<n)是R
n
中k个线性无关的列向量。证明:存在n阶满秩方阵P,使得P以α
1
,α
2
,…,α
k
为其前k列。
选项
答案
取齐次线性方程组[*]的基础解系ξ
1
,…,ξ
n-k
,则可证明α
1
,…,α
k
,ξ
1
,…,ξ
n-k
线性无关:设λ
1
α
1
+…+λ
k
α
k
+μ
1
ξ
1
+…+μ
n-k
ξ
n-k
=0,两端左乘(λ
1
α
1
+…+λ
k
α
k
)T,并利用α
i
T
ξ
i
=0(i=1,…,k;j=1,…,n一k),得(λ
1
α
1
+…+λ
k
α
k
)
T
(λ
1
α
1
+…+λ
k
α
k
)=0,即||λ
1
α
1
+…+λ
k
α
k
||=0,[*]λ
1
α
1
+…+λ
k
α
k
=0,而α
1
,…,α
k
线性无关,[*]λ
1
=…=λ
k
=0,[*]μ
1
ξ
1
+…+μ
n-k
ξ
n-k
=0,又ξ
1
,…,ξ
n-k
线性无关,[*]μ
1
=…=μ
n-k
=0,于是证得α
1
,…,α
k
,ξ
1
,…,ξ
n-k
线性无关,令矩阵P=[α
1
…α
k
ξ
1
…ξ
n-k
],则P为满秩方阵,且以α
1
,…,α
k
为其前k列。
解析
转载请注明原文地址:https://kaotiyun.com/show/ceU4777K
0
考研数学三
相关试题推荐
政府和市场的关系问题,是一个世界性的问题。它既是经济理论研究的焦点,也是各国经济发展实践中的难点。回望40多年的改革开放历程,我们坚持以发展为第一要务,不断理顺政府和市场的关系,取得了令世人瞩目的巨大成就。处理政府和市场的关系中,更好发挥政府作用,要求
马克思通过分析剩余价值的生产、积累、流通以及分配,揭示了剩余价值的运动规律,创立了剩余价值理论。剩余价值理论
结合材料回答问题:加强和创新社会治理,非常重要的一点就是推动社会治理重心下移。打赢疫情防控阻击战,更需要将防控工作落实到单位社区、居住社区、小区、院落、居民楼、每一个有人群的空间,直到每一户、每个人。在这次疫情防控中,很多地方都把干部派到社区、小
结合材料回答问题:材料1为做好疫情防控、阻断病毒传播渠道,近期多地积极行动、出台措施?规范疫情期间废弃口罩收运处置,加强医疗废弃物处置监管。福建省利用省级生态环境大数据平台,加强疫情期间医疗废弃物监管。福建省级生态环境大数据平
一个袋子中装有5个红球,3个白球,2个黑球,从中任取3个球,求其中恰有一个红球、一个白球和一个黑球的概率.
一个袋子中装有a+b个球,其中a个黑球,b个白球,随意地每次从中取出一球(不放回),求前i次中恰好取k个黑球的概率.
设f(x)在[a,b]上可积,又,证明φ(x)是[a,b]上的连续函数.
设f(x)在[a,b]上连续,且f(x)>0,x∈[a,b],证明:(1)Fˊ(x)≥2;(2)方程F(x)=0在区间(a,b)内有且仅有一个根.
求下列隐函数的指定偏导数:
设F1(x)与F2(x)分别为随机变量,X1与X2的分布函数,为使F(x)=aF1(x)-bF2(x)是某一随机变量的分布函数,在下列给定的各组数值中应取().
随机试题
简述企业财务管理的方法。
设有抛物线y=4x-x2,抛物线上哪一点处的切线平行于x轴?写出该切线方程.
具有主司眼睑开合功能的是
表证和里证的主要鉴别要点是
我国《中华人民共和国审计法》正式施行的时间是()。
根据《合同法》的规定,在受赠人()的情况下,赠与人可以撤销赠与。
Recently,asurveywasdoneamong288,000students,whichshowsthattoday’straditional-agecollegefreshmenare"morematerial
设P(B)=0.5,P(A—B)=0.3,则P(A+B)=_________.
一般,硬盘的容量大概是内存容量的()。
•Youwillhearanotherfiverecordings.•Foreachrecording,decidewhoisspeaking.•Writeoneletter(A--H)nexttothenumber
最新回复
(
0
)