首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αk(k<n)是Rn中k个线性无关的列向量。证明:存在n阶满秩方阵P,使得P以α1,α2,…,αk为其前k列。
设α1,α2,…,αk(k<n)是Rn中k个线性无关的列向量。证明:存在n阶满秩方阵P,使得P以α1,α2,…,αk为其前k列。
admin
2015-09-14
60
问题
设α
1
,α
2
,…,α
k
(k<n)是R
n
中k个线性无关的列向量。证明:存在n阶满秩方阵P,使得P以α
1
,α
2
,…,α
k
为其前k列。
选项
答案
取齐次线性方程组[*]的基础解系ξ
1
,…,ξ
n-k
,则可证明α
1
,…,α
k
,ξ
1
,…,ξ
n-k
线性无关:设λ
1
α
1
+…+λ
k
α
k
+μ
1
ξ
1
+…+μ
n-k
ξ
n-k
=0,两端左乘(λ
1
α
1
+…+λ
k
α
k
)T,并利用α
i
T
ξ
i
=0(i=1,…,k;j=1,…,n一k),得(λ
1
α
1
+…+λ
k
α
k
)
T
(λ
1
α
1
+…+λ
k
α
k
)=0,即||λ
1
α
1
+…+λ
k
α
k
||=0,[*]λ
1
α
1
+…+λ
k
α
k
=0,而α
1
,…,α
k
线性无关,[*]λ
1
=…=λ
k
=0,[*]μ
1
ξ
1
+…+μ
n-k
ξ
n-k
=0,又ξ
1
,…,ξ
n-k
线性无关,[*]μ
1
=…=μ
n-k
=0,于是证得α
1
,…,α
k
,ξ
1
,…,ξ
n-k
线性无关,令矩阵P=[α
1
…α
k
ξ
1
…ξ
n-k
],则P为满秩方阵,且以α
1
,…,α
k
为其前k列。
解析
转载请注明原文地址:https://kaotiyun.com/show/ceU4777K
0
考研数学三
相关试题推荐
近百年来中国的发展变化早已证明,中国共产党的领导是历史的选择、是人民的选择。回首过去,中国共产党紧紧依靠人民,跨过一道又一道沟坎,取得一个又一个胜利,为中华民族作出了伟大历史贡献。中国共产党区别于其他任何政党的显著标志是
近年来,随着科技的不断进步,人们的生活变得越来越便利。手机移动支付便利了人们的交易往来,有效推动了经济的发展。GPS的应用使人们的出行更为便利,推动了交通运输业的发展。2020年,我国北斗三号全球卫星导航系统正式开通。这意味着从区域到全球,从行业应用到大众
党的十八大以来,习近平总书记以高瞻远瞩的战略眼光和宏阔视野,从关系党的前途命运和国家长治久安的战略全局高度认识法治、定位法治、布局法治、推进法治、厉行法治,创造性地提出了新时代全面依法治国的工作布局,明确要求坚持依法治国、依法执政、依法行政共同推进,坚持法
只有让法治和德治共同发挥作用,才能使法律和道德相辅相成,法治和德治相得益彰,做到法安天下,德润人心。推动法治和德治的相互促进,需要
社会主义协商民主是在中国共产党领导下,人民内部各方面围绕改革发展稳定重大问题和涉及群众切身利益的实际问题,在决策之前和决策实施之中开展广泛协商,努力达成共识的重要民主形式。社会主义协商民主有利于
“中国特色社会主义”这一重大命题的提出是在()。
某数学家有两盒火柴,每一盒装有N根.每次使用时,他在任一盒中取一根,问他发现一盒空,而另一盒还有k根火柴的概率是多少?
在求直线l与平面Ⅱ的交点时,可将l的参数方程x=xo+mt,y=yo+nt,z=zo+pt代入Ⅱ的方程Ax+By+Cz+D=0,求出相应的t值.试问什么条件下,t有唯一解、无穷多解或无解?并从几何上对所得结果加以说明.
设f(x)在区间[-a,a](a>0)上有二阶连续导数,f(0)=0写出f(x)的带拉格朗日余项的一阶麦克劳林公式;
随机试题
《城市房地产管理法》规定了一些基本制度,这些房地产交易制度有()。
武夷岩茶的汤色主要是金黄型。
年物价水平上升速率在10%以内,被称为()。
根据我国工程建设监理程序的规定,项目监理组织开展监理工作的第一步是( )。
信用作为一个经济范畴,对于其本质的认识错误的是()。
同意你校关于建立行政学校的请示。
为贬低他人而取绰号的行为侵犯了公民的()。
数据库中有"商品"表如下:,要查找出单价大于等于3000并且小于10000的记录,正确的SQL命令是( )。
例如:她很活泼,说话很有趣,总能给我们带来快乐,我们都很喜欢和她在一起。她是个什么样的人?A幽默AB马虎C骄傲D害羞很多人爱吃巧克力,尤其是女性。这是为什么呢?首先,巧克力大多是甜的,而很多女性都喜欢吃甜食;其次,难过的时候,吃块儿巧克力,
WilliamKunzisacomputergenius(天才).Whenhewasjust11,Kunzstartedwritingsoftwareprograms,andby14hehadworkedout
最新回复
(
0
)