首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+ao)内的交点个数(其中k为常数).
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+ao)内的交点个数(其中k为常数).
admin
2016-10-20
42
问题
讨论曲线y=2lnx与y=2x+ln
2
x+k在(0,+ao)内的交点个数(其中k为常数).
选项
答案
令f(x)=2x+ln
2
x+k-2lnx(x∈(0,+∞)),于是本题两曲线交点个数即为函数f(x)的零点个数.由 [*] 令f’(x)=0,可解得唯一驻点x
0
=1∈(0,+∞). 当0<x<1时f’(x)<0,f(x)单调减少;而当x>1时f’(x)>0,f(x)单调增加.于是f(1)=2+k为f(x)在(0,+∞)内唯一的极小值点,且为(0,+∞)上的最小值点.因此f(x)的零点个数与最小值f(1)=2+k的符号有关. 当f(1)>0即k>=-2时f(x)在(0,+∞)内恒为正值函数,无零点. 当f(1)=0即k=-2时f(x)在(0,+∞)内只有一个零点x
0
=1. 当f(1)<0即k<-2时,需进一步考察f(x)在x→0
+
与x→+∞的极限: [*] 由连续函数的零点定理可得,[*]∈(0,1)与x
2
∈(1,+∞)使得f(x
1
)=f(x
2
)=0,且由f(x)在(0,1)与(1,+∞)内单调知f(x)在(0,1)内与(1,+∞)内最多各有一个零点,所以当k<-2时,f(x)在(0,+∞)内恰有两个零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/ciT4777K
0
考研数学三
相关试题推荐
将13个分别写有A、A、A、C、E、H、I、I、M、M、N、T、T的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN”的概率.
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
从[0,1]中随机取两个数,求两数之和小于6/5的概率.
在一通信渠道中,能传送字符AAAA,BBBB,CCCC三者之一,由于通信噪声干扰,正确接收到被传送字母的概率为0.6,而接收到其他两个字母的概率均为0.2,假设前后字母是否被歪曲互不影响.(1)求收到字符ABCA的概率;(2)若收到字符
求下列图形的面积:(1)y=x2-x+2与通过坐标原点的两条切线所围成的图形;(2)y2=2x与点(1/2,1)处的法线所围成的图形.
设有一力场,场力的大小与作用点与z轴的距离成反比(比例系数为k),方向垂直于z轴并且指向z轴,试求一质点沿圆弧x=cost,y=1,z=sint从点(1,1,0)依t增加的方向移动到点(0,1,1)时场力所做的功.
(1)证明三个向量共面的充要条件是其中一个向量可以表示为另两个向量的线性组合.(2)设a=(ax,ay,az),b=(b,by,bz),且a×b≠0,证明:过点Mo(x,yo,zo),并且以a×b为法向的平面具有如下形式的参数方程:
指出下列方程在平面解析几何与空间解析几何中分别表示什么几何图形:(1)x-y=1;(2)x2-2y2=1;(3)x2-2y=1;(4)2x2+y2=
设函数f(x),g(x)具有二阶导数,且g"(x)
设X1,X2,…,Xn(n>1)是来自总体N(μ,σ2)的随机样本,用2X2-X1,及X1作总体参数μ为估计算时,最有效的是_______.
随机试题
企业确定要求达到的最低收益率的基础是
庆父不死,________。(《左传》)
配SPG溶液时应把PH值调到
牛,3岁,体温升高,呼吸浅表急速,腹式呼吸;听诊心音减弱,胸部有摩擦音,叩诊胸部有疼痛表现,水平浊音。该病最可能的诊断是()
患者,男,52岁。右上腹疼痛2个月,右胁胀满,胁下瘾块触痛,烦躁易怒,恶心纳呆,面色萎黄不荣,舌暗有瘀斑,苔薄白,脉弦涩。实验室检查:甲胎球蛋白510ng/ml,B型超声波示右肝叶占位性病变,直径5cm。其证型是
下列各项资本成本的计算中,需要考虑发行费用的有()。
国务院发布的《关于加强公安队伍建设的十二项措施》中,赋予了“110”报警服务台受理人民群众投诉公安机关和民警违法违纪问题的新职能。()
元代监察法律的集大成者是仁宗时期编纂的()。
如图所示,某园区网用10Gbps的POS技术与Internet相连,POS接口的帧格式是SONET。园区网内部路由协议采用OSPF,与Internet的连接使用静态路由协议。该园区网还通过一台Cisc02511和Modempool设备为用户提供拨号入网服
Whydopeopleplayteamsports?
最新回复
(
0
)