首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设xOy平面上有正方形D={(x,y)|0≤x≤1,0≤y≤1}及直线l:x+y=t(t≥0)。若S(t)表示正方形D位于直线l左下方部分的面积,试求∫0xS(t)dt(x≥0)。
设xOy平面上有正方形D={(x,y)|0≤x≤1,0≤y≤1}及直线l:x+y=t(t≥0)。若S(t)表示正方形D位于直线l左下方部分的面积,试求∫0xS(t)dt(x≥0)。
admin
2018-04-14
60
问题
设xOy平面上有正方形D={(x,y)|0≤x≤1,0≤y≤1}及直线l:x+y=t(t≥0)。若S(t)表示正方形D位于直线l左下方部分的面积,试求∫
0
x
S(t)dt(x≥0)。
选项
答案
先写出面积S(t)的(分段)表达式。 当0<t<1时,图形为三角形,利用三角形的面积公式: S(t)=1/2t
2
; 当1<t<2时,图形面积可由正方形面积减去小三角形面积,其中由于x+y=t与y=1交点的横坐标为t-1,于是,小三角形的边长为:1-(t-1)=2-t,所以 S(t)=1-[*](2-t)
2
=1-[*](t
2
-4t+4)=-[*]t
2
+2t-1; 当t>2时,图形面积就是正方形的面积:S(t)=1,则 [*] 当0≤x≤1时,∫
0
x
S(t)dt=∫
0
x
1/2t
2
dt=(1/2.t
3
/3)|
0
x
=x
3
/6; 当1<x≤2时,∫
0
x
S(t)dt=∫
0
1
S(t)dt+∫
1
x
S(t)=∫
0
1
1/2t
2
dt+∫
1
x
[1-[*](t-2)
2
]dt [*] 当x>2时,∫
0
x
S(t)dt=∫
0
2
S(t)dt+∫
2
x
S(t)dt=1+∫
2
x
1dt=x-1。 因此, [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/cxk4777K
0
考研数学二
相关试题推荐
设f(x)是连续函数,F(x)是f(x)的原函数,则
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
已知二次型f(x1,x2,x3)=(1-a)x22+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求n的值;
设A为n阶非奇异矩阵,a为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是aTA-1a≠b.
利用求复合函数偏导的方法,得[*]
设n阶矩阵A与B等价,则必有().
设a1=2,an+1=1/2(an+1/an)(n=1,2,…),证明存在,并求出数列的极限.
没ρ=ρ(x)是抛物线上任一点M(x,y)(x≥1)的曲率半径,s=s(x)是该抛物线上介于点A(1,1)与M之间的弧长,计算的值.(在直角坐标系下曲率公式为
设Ik=∫0kπex2sinxdx(k=1,2,3),则有
设,则I,J,K的大小关系是
随机试题
治疗糖尿病的基本措施是
因下列事项而减少的固定资产,不通过“固定资产清理”账户核算的有()。
余额包销最长不得得超过()。
下列关于商业银行资产负债币种结构流动性风险管理的说法,不正确的是()。
权益乘数在数值上等于()。
图1所示是依据相关结构对生物进行的分类,与图示中①②③对应的生物实例是()。
下列()是网络协议的组成要素。
下列不正确的说法有()。
Cisco路由器上使用团体字pub向管理站pub.abc.edu.cn发送自陷消息,正确的snnlp配置语句是()。
Thelawisgreatmassofrules,showingWhenandhowfaramanis【S1】______tobepunished,ortobemadetohandovermoneyorp
最新回复
(
0
)