首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为[0,1]上单调减少的连续函数,且f(x)>0,试证:存在唯一的点ξ∈(0,1),使得∫0ξ f(x)dx=(1-ξ)f( ξ) .
设f(x)为[0,1]上单调减少的连续函数,且f(x)>0,试证:存在唯一的点ξ∈(0,1),使得∫0ξ f(x)dx=(1-ξ)f( ξ) .
admin
2017-05-31
22
问题
设f(x)为[0,1]上单调减少的连续函数,且f(x)>0,试证:存在唯一的点ξ∈(0,1),使得∫
0
ξ
f(x)dx=(1-ξ)f( ξ) .
选项
答案
令φ(x)=(1一x)F(x)=∫
0
x
f(t)dt—x∫
0
x
f(t)dt,则φ(x)在[0,1]上连续,在(0,1)内可导,且φ(0)=φ(1)=0. 由洛尔定理,存在点ξ∈(0,1),使得φ’(ξ)=0,即f(ξ)一∫
0
ξ
f(t)dt—ξf(ξ)=0,故有∫
0
ξ
f(t)dt=(1一ξ)f(ξ) 用反证法证明唯一性. 假若在(0,1)内存在点ξ
1
、ξ
2
,不妨设ξ
1
<ξ
2
,使[*]两式相减得: [*] 由已知条件可知,上式的左边大于零,而右边小于零矛盾,故点ξ是唯一的.
解析
记F(x)=∫
0
x
f(t)dt,欲证存在点ξ,使得F(ξ)=(1—ξ)F’(ξ)
F(x)=(1-x)F’(x).解变量可分离的微分方程得
即(1一x)F(x)=c.
作辅助函数φ(x)=(1一x)F(x),用洛尔定理证明.
转载请注明原文地址:https://kaotiyun.com/show/deu4777K
0
考研数学一
相关试题推荐
设f(x)=xe-x,求fn(x).
设m,n均是正整数,则反常积分的收敛性
设f(x)是连续函数当f(x)是以2为周期的周期函数时,证明函数也是以2为周期的周期函数.
设f(x)有连续导数,f(0)=0,f’(0)≠0,且当x→0时,F’(x)与xk是同阶无穷小。则k等于
[*]
[*]
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:存在η∈(1/2,1),使f(η)=η;
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.当a为何值时,向量组(I)与(Ⅱ)等价?
一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重50千克,标准差为5千克,若用最大载重为5吨的汽车承运,试利用中心极限定理说明每辆最多可以装多少箱才能保障不超载的概率大于0.9777(φ(2)=0.977,其中(x)是标准正态分布函数)
设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份.随机取出一个地区,再从中抽取两份报名表.(1)求先抽到的一份报名表是女生表的概率p;(2)设后抽到的一份报名表为男生的报名表,求先抽到的报名表为女
随机试题
IsoonrealizedthatIhadenteredanunusualkindofshop.Therewerenogoodsondisplay;therewasnoshopwindow:nothing【C1
男性,28岁,病毒性心肌炎,病史1个月,Holter监测结果为,夜间出现间歇性Ⅱ度Ⅰ型房室传导阻滞,心率为52次/分,此时的处理是
A.下颌第三磨牙B.下颌第二双尖牙C.上颌中切牙D.上颌侧切牙E.上颌尖牙畸形中央最常见于哪一组牙上
下列说法错误的是()。
有50名学生选班长,得票最多的人当选,中途计票时发现刘燕已得18票,张军已得16票,李明已得9票,刘燕至少再得多少张票就一定能成为班长?
了如指掌对于()相当于()对于坚固
某单位要建造一个容积为100立方米的仓库,底面为正方形。仓库地面固定造价为1600元,仓库顶部造价为每平方米500元,仓库壁的造价为每平方米160元,为使造价最少,则每面墙的宽度为
执行下列语句:strInput=InputBox(“请输入字符串”,“字符串对话框”,“字符串”)将显示输入对话框。此时如果直接单击“确定”按钮,则变量strlnput的内容是()。
Recentresearchhadclaimedthatanexcessofpositiveions(离子)intheaircanhaveanill-effectonpeople’sphysicalorpsych
WritingaResearchPaperI.ResearchPaperandOrdinaryEssayA.Similarityin【T1】______:【T1】______e.g.—choosingatopic—
最新回复
(
0
)