首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为[0,1]上单调减少的连续函数,且f(x)>0,试证:存在唯一的点ξ∈(0,1),使得∫0ξ f(x)dx=(1-ξ)f( ξ) .
设f(x)为[0,1]上单调减少的连续函数,且f(x)>0,试证:存在唯一的点ξ∈(0,1),使得∫0ξ f(x)dx=(1-ξ)f( ξ) .
admin
2017-05-31
39
问题
设f(x)为[0,1]上单调减少的连续函数,且f(x)>0,试证:存在唯一的点ξ∈(0,1),使得∫
0
ξ
f(x)dx=(1-ξ)f( ξ) .
选项
答案
令φ(x)=(1一x)F(x)=∫
0
x
f(t)dt—x∫
0
x
f(t)dt,则φ(x)在[0,1]上连续,在(0,1)内可导,且φ(0)=φ(1)=0. 由洛尔定理,存在点ξ∈(0,1),使得φ’(ξ)=0,即f(ξ)一∫
0
ξ
f(t)dt—ξf(ξ)=0,故有∫
0
ξ
f(t)dt=(1一ξ)f(ξ) 用反证法证明唯一性. 假若在(0,1)内存在点ξ
1
、ξ
2
,不妨设ξ
1
<ξ
2
,使[*]两式相减得: [*] 由已知条件可知,上式的左边大于零,而右边小于零矛盾,故点ξ是唯一的.
解析
记F(x)=∫
0
x
f(t)dt,欲证存在点ξ,使得F(ξ)=(1—ξ)F’(ξ)
F(x)=(1-x)F’(x).解变量可分离的微分方程得
即(1一x)F(x)=c.
作辅助函数φ(x)=(1一x)F(x),用洛尔定理证明.
转载请注明原文地址:https://kaotiyun.com/show/deu4777K
0
考研数学一
相关试题推荐
已知A为n阶方阵,r(A)=n-3,且α1,α2,α3是AX=0的三个线性无关的解向量,则()为AX=0的基础解系.
[*]
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设数列{an}满足条件:a0=3,a1=1,an-2-n(n-1)an=0(n≥2),S(x)是幂级数的和函数。求S(x)的表达式。
曲面x2+cos(xy)+yz+x=0在点(0,1,-1)处的切平面方程为
设A,B为同阶方阵,(Ⅰ)如果A,B相似,试证A,B的特征多项式相等.(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立.(Ⅲ)当A,B均实对称矩阵时,试证(Ⅰ)的逆命题成立.
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
(2004年试题,三)计算曲面积分其中∑是曲面z=1一x2一y2(z≥0)的上侧.
已知曲线在直角坐标系中由参数方程给出:x=t+e-1,y=2t+e-2t(t≥0).证明该参数方程确定连续函数Y=y(戈),z∈[1,+∞).
求空间第二型曲线积分其中L为球面x2+y2+z2=1在第1象限部分的边界线,从球心看L,L为逆时针.
随机试题
除《麻醉药品和精神药品管理条例》规定外,任何单位、个人不得进行
关于胃液的叙述,错误的是
虚热证的临床表现有
律师建议谢某可向下列()单位索赔。谢某儿子的医药费应由()。
下列各项中,属于会计核算内容的有()。
2012年国家火炬计划项目总立项数2108项,其中产业化示范项目1834项,环境建设项目274项。2012年火炬计划重点支持项目445项。2012年,国家火炬计划项目中央财政安排经费3.2亿元支持重点项目。在2012年火炬计划重点支持项目中,有(
在生物学里,下列属于单糖的是()。
下列写法正确的是()。
Bysayingnodocumentissafeanymore,theauthorprobablymeans______.Theadvantageofusingbandingpatternstotracedocu
Forthispart,youareallowed30minutestowriteashortessay.Youshouldstartyouressaywithabriefdescriptionofthepi
最新回复
(
0
)