首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求当x>0,y>0,z>0时,函数f(x,y,z)=lnx+21ny+3lnz在球面x2+y2+z2=6λ2上的最大值.并证明:对任何正实数a、b、c,不等式ab2c3≤成立.
求当x>0,y>0,z>0时,函数f(x,y,z)=lnx+21ny+3lnz在球面x2+y2+z2=6λ2上的最大值.并证明:对任何正实数a、b、c,不等式ab2c3≤成立.
admin
2017-05-31
87
问题
求当x>0,y>0,z>0时,函数f(x,y,z)=lnx+21ny+3lnz在球面x
2
+y
2
+z
2
=6λ
2
上的最大值.并证明:对任何正实数a、b、c,不等式ab
2
c
3
≤
成立.
选项
答案
为求在条件x
2
+y
2
+z
2
=6r
2
下函数f(x,y,z)=lnx+2lny+3lnz的最大值,不 妨设L(x,y,z,λ)=lnx+2lny+3lnz+λ(x
2
+y
2
+z
2
一6r
2
)(x>0,y>0,z>0).由方程组 [*] 因为驻点(x,y,z)在球面x
2
+y
2
+z
2
=6r
2
的第一卦限部分上,则点[*]是唯一的驻点. 另一方面,当点趋于球面(第一卦限部分)与坐标平面的交线时,函数f(x,y,z)便趋于一∞,所以函数f(x,y,z)在指定的区域内部取得最大值,从而此唯一的驻点便是最大值点,即 [*]
解析
本题第一部分是求条件极值,利用拉格朗日乘子法解答.
本题第二部分是利用第一部分得到的结果来证明不等式.
(1)本题的目标函数亦可取为f(x,y,z)=xy
2
z
3
,同样有效.
(2)由本题的目标函数与约束条件在形式上的对称性,还可以将上面的条件极大值问题
改为如下的条件极小值问题:求目标函数f(x,y,z)=x
2
+y
2
+z
2
在条件xy
2
z
3
=6r
2
约束下的最小值.只是具体求解起来不如上述方法简单.
转载请注明原文地址:https://kaotiyun.com/show/dlu4777K
0
考研数学一
相关试题推荐
[*]
设f(x),g(x)在[a,b]上连续,(a,b)内可导,证明存在ε∈(a,b),使得[f(b)-f(a)]gˊ(ε)=[g(b)-g(a)]fˊ(ε)
求不定积分
设函数问a为何值时,f(x)在x=0处连续;a为何值时,x=0是f(x)的可去间断点?
A、是奇函数,非偶函数B、是偶函数,非奇函数C、既非奇函数,又非偶函数D、既是奇函数,又是偶函数D
设(x0,y0)是抛物线y=ax2+bx+c上的一点,若在该点的切线过原点,则系数应满足的关系是_______.
设a>0,f(x)=g(x)=,而D表示整个平面,则I==__________.
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:(Ⅰ)存在η∈(a,b),使得f(η)=g(η);(Ⅱ)存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ
随机试题
8kg小儿,临床表现重度酸中毒,CO2CP8mmol/L,初次为提高CO2CP达到13mmol/L需补4%碳酸氢钠液是
A.WhatelseshouldIkeepinmindB.Yes,goahead,pleaseC.whatelsedon’tweneedD.whataboutourfriendlinessandattitu
脉压差增大的先天性心脏病是
大中型及限额以上项目的项目建议书,由( )委托具有相应资质的工程咨询单位评估后审批。
法国统计家恩格尔在1587年经过大量调查统计发现,随着家庭收入的增加,人们用于食品的开支比例会相应减少,这就是著名的“恩格尔定律”。()
ADR、ADL和OBOS既可以应用到个股,又可以应用到综合指数。()
对于同一公共服务的同一个受益者,不应该同时并存两个或两个以上的收费项目,体现政府收费的原则是()。
该案例的核心症状表现是()。针对该案例你的初步印象是()。
为了尽快清除因大雪造成的道路积雪,常用的办法是撒“融雪盐”,其原理是()。
对成就动机的研究表明,与避免失败者相比,追求成功者倾向于选择()
最新回复
(
0
)