首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求当x>0,y>0,z>0时,函数f(x,y,z)=lnx+21ny+3lnz在球面x2+y2+z2=6λ2上的最大值.并证明:对任何正实数a、b、c,不等式ab2c3≤成立.
求当x>0,y>0,z>0时,函数f(x,y,z)=lnx+21ny+3lnz在球面x2+y2+z2=6λ2上的最大值.并证明:对任何正实数a、b、c,不等式ab2c3≤成立.
admin
2017-05-31
50
问题
求当x>0,y>0,z>0时,函数f(x,y,z)=lnx+21ny+3lnz在球面x
2
+y
2
+z
2
=6λ
2
上的最大值.并证明:对任何正实数a、b、c,不等式ab
2
c
3
≤
成立.
选项
答案
为求在条件x
2
+y
2
+z
2
=6r
2
下函数f(x,y,z)=lnx+2lny+3lnz的最大值,不 妨设L(x,y,z,λ)=lnx+2lny+3lnz+λ(x
2
+y
2
+z
2
一6r
2
)(x>0,y>0,z>0).由方程组 [*] 因为驻点(x,y,z)在球面x
2
+y
2
+z
2
=6r
2
的第一卦限部分上,则点[*]是唯一的驻点. 另一方面,当点趋于球面(第一卦限部分)与坐标平面的交线时,函数f(x,y,z)便趋于一∞,所以函数f(x,y,z)在指定的区域内部取得最大值,从而此唯一的驻点便是最大值点,即 [*]
解析
本题第一部分是求条件极值,利用拉格朗日乘子法解答.
本题第二部分是利用第一部分得到的结果来证明不等式.
(1)本题的目标函数亦可取为f(x,y,z)=xy
2
z
3
,同样有效.
(2)由本题的目标函数与约束条件在形式上的对称性,还可以将上面的条件极大值问题
改为如下的条件极小值问题:求目标函数f(x,y,z)=x
2
+y
2
+z
2
在条件xy
2
z
3
=6r
2
约束下的最小值.只是具体求解起来不如上述方法简单.
转载请注明原文地址:https://kaotiyun.com/show/dlu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 A
[*]
[*]
在投掷两枚骰子的试验中,观察两枚骰子出现的点数,写出这一试验的样本空间.记X=两枚骰子出现的点数的和,Y=两枚骰子出现的最大点数.写出随机变量X和Y作为样本空间上的函数的表达式.
设f(x)有连续导数,f(0)=0,f’(0)≠0,且当x→0时,F’(x)与xk是同阶无穷小。则k等于
用欧拉方程x2(d2y/dx2)+4x(dy/dx)+2y=0(x>0)的通解为_______.
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,t1t2为实常数.试问t1t2满足什么关系时,β1,β2,…,βs,也为Ax=0的一个基础解系.
设函数y=f(x)具有二阶导数,且f’(x)>0,f(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则
设A和B是任意两个概率不为0的不相容事件,则下列结论中肯定正确的是()
计算二重积分,其中D={(x,y)|0≤x≤1,0≤y≤1}.
随机试题
糕点种类繁多,但各类糕点对()感官指标项目要求内容是一致的。
国际上普遍采用细菌的分类系统是
慢性粒细胞白血病的中性粒细胞碱性磷酸酶(NAP)积分值
卫气最主要的作用是脾气在五脏中的突出作用是
患者,女,27岁。每因劳累后低热已数年。近来每日低热上午为著,伴有头痛头晕,倦怠乏力,舌淡,苔薄白,脉虚无力。证属
A、乙酰辅酶AB、乙酰乙酰辅酶AC、丙酰辅酶AD、草酰乙酸E、葡萄糖1体内合成长链脂肪酸的主要原料是
根据《行政许可法》的规定,行政许可积极作用的表现不包括()
乙有限责任公司不设监事会,只设了一名监事甲。甲的下列做法中,符合公司法律制度规定的有()。
(1)同学们希望听到名家讲京戏(2)同学们对京戏有了更进一步的了解和喜爱(3)某高校开设了一门京剧课程(4)引起同学们极大兴趣(5)学校请著名京剧艺术家来校办讲座
A、Thepianistwaswhisperingtotheaudienceimpolitelywhileplaying.B、Thenoisedidn’tbotherthepianist.C、Thepianistdist
最新回复
(
0
)