首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶方阵,A的每行元素之和为3,且齐次线性方程组Ax=0有通解k1(1,2,一2)T+k2(2,1,2)T,其中k1,k2是任意常数,α=(1,1,1)T. (Ⅰ)证明:对任意的一个3维向量β,向量Aβ和α线性相关; (Ⅱ)若β=(
已知A是3阶方阵,A的每行元素之和为3,且齐次线性方程组Ax=0有通解k1(1,2,一2)T+k2(2,1,2)T,其中k1,k2是任意常数,α=(1,1,1)T. (Ⅰ)证明:对任意的一个3维向量β,向量Aβ和α线性相关; (Ⅱ)若β=(
admin
2016-05-03
103
问题
已知A是3阶方阵,A的每行元素之和为3,且齐次线性方程组Ax=0有通解k
1
(1,2,一2)
T
+k
2
(2,1,2)
T
,其中k
1
,k
2
是任意常数,α=(1,1,1)
T
.
(Ⅰ)证明:对任意的一个3维向量β,向量Aβ和α线性相关;
(Ⅱ)若β=(3,6,一3)
T
,求Aβ.
选项
答案
当β=(3,6,一3)
T
时,令β=x
1
ξ
1
+x
2
ξ
2
+x
3
ξ
3
,解非齐次线性方程组 [*] 即A有特征值λ
1
=3,对应的特征向量为ξ
1
=(1,1,1)
T
. Ax=0有通解k
1
(1,2,一2)
T
+k
2
(2,1,2)
T
,知A有特征值λ
2
=λ
3
=0,对应的特征向量为 ξ
2
=(1,2,一2)
T
,ξ
3
=(2,1,2)
T
. 因ξ
1
,ξ
2
,ξ
3
线性无关,故任意3维向量β均可由ξ
1
,ξ
2
,ξ
3
线性表出,设 β=x
1
ξ
1
+x
2
ξ
2
+x
3
ξ
3
, 从而有Aβ=A(x
1
ξ
1
+x
2
ξ
2
+x
3
ξ
3
)=x
1
Aξ
1
=3x
1
[*]=3x
1
α, 得证Aβ和α线性相关. (Ⅱ)[解]当β=(3,6,一3)
T
时,令β=x
1
ξ
1
+x
2
ξ
2
+x
3
ξ
3
,解非齐次线性方程组 [*] 解得 (x
1
,x
2
,x
3
)
T
=(3,2,一1)
T
. 即 β=3ξ
1
+2ξ
2
-ξ
3
, Aβ=A(3ξ
1
+2ξ
2
-ξ
3
)=3ξ
1
=3×3×[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/dmT4777K
0
考研数学三
相关试题推荐
自古以来,人们就在探讨道德起源这一重大理论问题,并提出了种种见解或理论。马克思主义道德观认为,人类社会的实际情况是,“物质生活的生产方式制约着整个社会生活、政治生活和精神生活的过程”。从这一实际出发来认识和把握道德起源,其中观点正确的是(
中国是一个有着几千年法律发展史的文明古国,产生过独具特色而又博大精深的法律思想。中国传统法律思想既是社会主义法治理念产生的文化背景和历史土壤,又为社会主义法治理念提供了思想元素和文化资源。“徒善不足以为政,徒法不能以自行”这体现的是今天全面推进依法治国中的
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
设α1,α2,…,αm为一个向量组,且α1≠θ,每一个向量αi(i>1)都不能由α1,α2,…,αi-1线性表示,求证:α1,α2,…,αm线性无关.
求曲线x2+z2=10,y2+z2=10在点(1,1,3)处的切线和法平面方程.
设一柱体的底部是xOy,面上的有界闭区域D,母线平行于x轴,柱体的上顶为一平面,证明:柱体的体积等于D的面积与上顶平面上对应于D的形心的点的竖坐标的乘积.
设u=f(x,z),而z=z(x,y)是由方程z=x+yψ(z)所确定的隐函数,其中f有连续偏导数,而ψ有连续导数,求du.
代数学基本定理告诉我们,n次多项式至多有n个实根,利用此结论及罗尔定理,不求出函数f(x)=(x-1)(x-2)(x-3)(x-4)的导数,说明方程fˊ(x)=0有几个实根,并指出它们所在的区间.
讨论下列级数在指定的区间内是否一致收敛
随机试题
画出图Ⅱ-15所示三相变压器的位形图,并判断其连接组别。
劳神过度易损伤的内脏是
关于儿童颌骨骨折的治疗,哪项是错误的
患者,女,45岁,食欲不振数日,症见嗳气吞酸、腹胀泄泻,证属脾胃虚弱、中气不和,治当健脾和胃,宜选用的中成药是
对使用新能源车船、节约能源车船的,免征车船税。()
以美国教育家杜威为代表的现代教育派倡导的“三中心”是()。
正如党的十七大报告所总结的:“改革开放不是一蹴而就的”,改革开放不是一次轻松浪漫的旅行,而是一次决定中华民族历史命运的伟大远航,它有___________的时刻,也时常充满惊涛骇浪。填入画横线部分最恰当的一项是()。
Swisswatchmakershavefirmlyestablishedthemselvesastheworld’sleadingwatchmakersoverthepastthreecenturies.Withare
Amajorreasonforconflictintheanimalworldisterritory.Themaleanimal【C1】______anarea.Thesizeoftheareais【C2】____
ItisknowntousthatEnglishisnotasoldasChinese,butitiswidelyusedbymostpeopleallovertheworld.Englishspeake
最新回复
(
0
)