首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型xTAx=ax12+2x22-x32+8x1x2+2bx1x3+2cx2x3,实对称矩阵A满足AB=O,其中B= (Ⅰ)用正交变换将二次型化为标准形,并写出所作的正交变换: (Ⅱ)判断矩阵A与B是否合同,并说明理由。
设二次型xTAx=ax12+2x22-x32+8x1x2+2bx1x3+2cx2x3,实对称矩阵A满足AB=O,其中B= (Ⅰ)用正交变换将二次型化为标准形,并写出所作的正交变换: (Ⅱ)判断矩阵A与B是否合同,并说明理由。
admin
2017-11-30
84
问题
设二次型x
T
Ax=ax
1
2
+2x
2
2
-x
3
2
+8x
1
x
2
+2bx
1
x
3
+2cx
2
x
3
,实对称矩阵A满足AB=O,其中B=
(Ⅰ)用正交变换将二次型化为标准形,并写出所作的正交变换:
(Ⅱ)判断矩阵A与B是否合同,并说明理由。
选项
答案
(Ⅰ)二次型对应的实对称矩阵为A=[*],因为AB=O,所以 [*] 下面求A的特征值 [*] A的特征值为0,6,-6。 当λ=0时,求解线性方程组(0E-A)x=0,解得α
1
=(1,0,1)
T
; 当λ=6时,求解线性方程组(6E-A)x=0,解得α
2
=(-1,-2,1)
T
; 当λ=-6时,求解线性方程组(-6E-A)x=0,解得α
3
=(-1,1,1)
T
。 下将α
1
,α
2
,α
3
单位化 [*] 则二次型在正交变换x=Qy的标准形为f=6y
2
2
-6y
3
2
,其中 [*] (Ⅱ)矩阵A与B不合同。因为r(A)=2,r(B)=1,由合同的必要条件可知矩阵A与B不合同。
解析
转载请注明原文地址:https://kaotiyun.com/show/dnX4777K
0
考研数学三
相关试题推荐
利用变换x=arctant将方程化为y关于t的方程,并求原方程的通解.
设总体X的概率分布为是未知参数.用样本值3,1,3,0,3,1,2,3求θ的矩估计值和最大似然估计值.
设总体X服从正态分布N(μ,σ2)(σ>0),X1,X2,…,Xn为来自总体X的简单随机样本,令Y=,求Y的数学期望与方差.
设总体X~N(0,1),(X1,X2,…,Xm,Xm+1,…,Xm+n)为来自总体X的简单随机样本,求统计量所服从的分布.
求函数的导数.
已知是连续函数,求a,b的值.
设f(x)在x=0处二阶导数连续,且试求f(0),f’(0),f"(0)以及极限
当x→0时,f(x)=为x的三阶无穷小,则a,b分别为()
设λ1,λ2是n阶矩阵A的特征值,α1,α2分别是A的对应于λ1,λ2的特征向量,则()
(06年)设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是【】
随机试题
先行组织者教学技术常用于()。
下列不符合葡萄胎的描述是
男性,50岁,咳嗽1个半月,痰中偶带血丝,胸部X线平片显示右上叶肺不张。下列哪项检查程序最恰当
A.局部蔓延B.血道扩散C.完全愈合D.不完全愈合E.淋巴道扩散动物机体抵抗力较强,且经适当治疗,多数急性炎症局部的结构和功能均可恢复常,此情形炎症结局最可能是
病例对照研究中,调查对象应当是
多次连续用药后,病原体对药物反应性逐渐降低,需增加剂量才能保持疗效,这种特性称为()。
导游张某带团赴海南旅游,返程期间因餐标问题与旅游者发生争执,一气之下擅自离团返京,造成该团无人负责,对旅游者滞留期间所支出的食宿费等直接费用应由()。
某鱼类行为学实验小组研究发现,A、B、C三种鱼的洄游周期分别为3个月、5个月、10个月。2011年1月在某一条河段同时监测到三种鱼,那么下一次在此河段监测到三种鱼的时间是什么时候?
对于随机变量X1,X2,…,Xn下列说法不正确的是().
IrarelyweararaincoatbecauseIspendmostofmytimeinacar.
最新回复
(
0
)