首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a,b,c为实数,求证:曲线y=ex与y=ax2+bx+c的交点不超过三个.
设a,b,c为实数,求证:曲线y=ex与y=ax2+bx+c的交点不超过三个.
admin
2016-10-26
89
问题
设a,b,c为实数,求证:曲线y=e
x
与y=ax
2
+bx+c的交点不超过三个.
选项
答案
令f(x)=e
x
-ax
2
-bx-c,那么问题等价于证明f(x)的零点不超过三个.假设结论不正确,则至少有四个点x
1
<x
2
<x
3
<x
4
,使得f(x
i
)=0,i=1,2,3,4. 由于f(x)在[x
1
,x
4
]上可导,由罗尔定理可知f′(x)在(x
1
,x
2
),(x
2
,x
3
),(x
3
,x
4
)内至少各有一个零点ξ
1
,ξ
2
,ξ
3
.又由于f′(x)在[ξ
1
,ξ
3
]上可导,由罗尔定理可知f″(x)在(ξ
1
,ξ
2
),(ξ
2
,ξ
3
)内至少各有一个零点η
1
,η
2
.同样地,由于f″(x)在[η
1
,η
2
]上可导,由罗尔定理可知[*](x)在(η
1
,η
2
)内至少有一个零点ζ.因此至少存在一点ζ∈(-∞,+∞)使得[*](x)=e
x
>0(x∈(-∞,+∞)),这就产生了矛盾.故f(x)的零点不超过三个.
解析
问题等价于f(x)=e
x
-ax
2
-bx-c的零点不超过三个.根据罗尔定理,可导函数的任何两个零点之间至少存在一个导函数的零点.因此本题需要用反证法.
转载请注明原文地址:https://kaotiyun.com/show/e1u4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 D
甲、乙两人分别拥有赌本30元和20元,他们利用投掷一枚均匀硬币进行赌博,约定如果出现正面,甲赢10元、乙10元.如果出现反面,则甲输10元、乙赢10元,分别用随机变量表示投掷一次后甲、乙两人的赌本,并求其概率分布和分布函数,画出分布函数的图形.
求y=3-x的n阶导数.
已知函数y=sinx的图形,作函数y=2sin﹙2x-π/2﹚的图形.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设n阶矩阵A的元素全为1,则A的n个特征值是________.
设f(x,y)与f(x,y)均为可微函数,且φ’(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是
设n维向量α=(a,0,…,0,a)T,a
在上半平面求一条向上凹的曲线,其上任一点P(x,y)处在曲率等于此曲线在该点的法线段PQ长度的倒数(Q是法线与x轴的交点),且曲线在(1,1)处在切线与x轴平行.
已知4阶方阵A=(α1,α2,α2,α4),α1,α2,α3,α4均为4维列向量,其α2,α3,α4线性无关,α=2α2-aα3,如果β=α1+α2+α3+α
随机试题
慢性支气管炎的早期,肺功能可出现的变化是
某患者,冠心病史10年。症见:心胸猝痛如绞,心痛彻背,形寒畏冷,四肢不温,心悸短气,舌质淡红,苔白,脉沉细。其病机是
铁路工程项目施工成本核算的主要方法不包括()。
ABC公司出纳员在审核该公司主任王某购买办公用品的发票时,发现出具发票的商场误将“ABC公司”写成“AB公司”,该出纳的下列做法中,正确的是()。
学生以个人或集体合作的方式参与美术活动,激发创意,了解()及其表达方式和方法。
从教师与学生的关系看,新课程要求教师应该是学生学习的()。
设向量β可由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则()
(96年)设ξ和η是相互独立且服从同一分布的两个随机变量,已知ξ的分布律为P(ξ=i)=,i=1,2,3.又设X=max(ξ,η),Y=min(ξ,η).(1)写出二维随机变量(X,Y)的分布律;(2)求EX
企业既可以将产品通过产品目录推荐给消费者,也可以通过离线零售商网络直接销售给消费者,还可以通过别的机构组织的网站来进行销售。该企业所采用的分销渠道策略是_____________。
编写如下程序:PrivateSubCommand1_Click()Functionproc(iAsInteger)DimmAsIntege,nAsIntegerDimaAsInteger,StaticbAsInteger
最新回复
(
0
)