首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs和β1,β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βj都正交,证明α1,α2,…,αs,β1,β2,…,βt线性无关.
设α1,α2,…,αs和β1,β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βj都正交,证明α1,α2,…,αs,β1,β2,…,βt线性无关.
admin
2018-06-27
83
问题
设α
1
,α
2
,…,α
s
和β
1
,β
2
,…,β
t
是两个线性无关的n维实向量组,并且每个α
i
和β
j
都正交,证明α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
线性无关.
选项
答案
用定义证明.设 c
1
α
1
+c
2
α
2
+…+c
s
α
s
+k
1
β
1
+k
2
β
2
+…+k
t
β
t
=0,记η=c
1
α
1
+c
2
α
2
+…+c
s
α
s
=-(k
1
β
1
+k
2
β
2
+…+k
t
β
t
),则(η,η)=(c
1
α
1
+c
2
α
2
+…+c
s
α
s
,k
1
β
1
+k
2
β
2
+…+k
t
β
t
)=0即η=0,于是c
1
,c
2
,…,c
s
,k
1
,k
2
,…,k
s
全都为0.
解析
转载请注明原文地址:https://kaotiyun.com/show/eek4777K
0
考研数学二
相关试题推荐
设f(u,v)具有连续偏导数,且满足f’u(u,v)+f’v(u,v)=uv求y(x)=e2x(x,x)所满足的一阶微分方程,并求其通解.
设S表示夹在x轴与曲线y=F(x)之间的面积.对任何t>0,S1(t)表示矩形-t≤x≤t,0≤y≤F(t)的面积.求:(1)S(t)=S—S1(t)的表达式;(2)S(t)的最小值.
试证明n维列向量组α1,α2,…αn线性无关的充分必要条件是
设α1,α2,…,αm均为以维列向量,那么,下列结论正确的是
设A是4×3矩阵,且A的秩r(A)=2,而B=,则r(AB)=________.
设y=f(x)是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C为M在x轴上的投影,0为坐标原点,若梯形OCMA的面积与曲边三角形CBM的面积之和为,求f(x)的表达式.
求微分方程y"+5y’+6y=2e-x的通解.
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).(1)证明∫-aaf(x)g(x)dx=A∫0ag(x)dx;(2)利用(1)的结论计算定积分|sinx|arct
设f(x)连续,求φ’(x),并讨论φ’(x)在x=0处的连续性.
随机试题
患者,女,29岁。因全身浮肿就诊,经系统检查诊断为肾病综合征,中医诊断为肾阳亏虚证水肿,采用中西药综合治疗。结合病情,既符合中医辨证、又能增加西药利尿效果的方剂是
有腐蚀性的调料,应使用玻璃、陶瓷等耐腐蚀的容器。()
下列选项中不是栓剂质量检查的项目的是
施工过程中耗费的构成工程实体或有助于工程实体形成的各项费用支出,称为()。
甲以协议转让方式取得乙上市公司7%的股份,之后又通过交易所集中竞价交易陆续增持乙公司5%的股份。根据证券法律制度的规定,甲需要进行权益披露的时点分别是()。
铃木教学法在具体实施中有哪些特点?
在社会主义市场经济中,宏观调控与微观搞活的关系是()。
当前,海水温度上升引发了一系列白化事件,研究人员非常担心全球珊瑚的命运。研究人员发现,虫黄藻能够利用光合作用产生自己及其寄主所需的养分。当温度较高的海水导致珊瑚礁排出名为虫黄藻的共生藻类时,失去彩色藻类的珊瑚逐渐变为白色,白化现象便发生了。如果白化现象持续
将考生文件夹下QIU\LONG文件夹中的文件WATER.FOX设置为只读属性。
Shehas______somebrilliantschemetodoubleherincome.
最新回复
(
0
)