首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs和β1,β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βj都正交,证明α1,α2,…,αs,β1,β2,…,βt线性无关.
设α1,α2,…,αs和β1,β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βj都正交,证明α1,α2,…,αs,β1,β2,…,βt线性无关.
admin
2018-06-27
84
问题
设α
1
,α
2
,…,α
s
和β
1
,β
2
,…,β
t
是两个线性无关的n维实向量组,并且每个α
i
和β
j
都正交,证明α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
线性无关.
选项
答案
用定义证明.设 c
1
α
1
+c
2
α
2
+…+c
s
α
s
+k
1
β
1
+k
2
β
2
+…+k
t
β
t
=0,记η=c
1
α
1
+c
2
α
2
+…+c
s
α
s
=-(k
1
β
1
+k
2
β
2
+…+k
t
β
t
),则(η,η)=(c
1
α
1
+c
2
α
2
+…+c
s
α
s
,k
1
β
1
+k
2
β
2
+…+k
t
β
t
)=0即η=0,于是c
1
,c
2
,…,c
s
,k
1
,k
2
,…,k
s
全都为0.
解析
转载请注明原文地址:https://kaotiyun.com/show/eek4777K
0
考研数学二
相关试题推荐
计算二重积分,其中D是由曲线和直线y=-x围成的区域.
设n阶方阵A的伴随矩阵为A*,且|A|=a≠0,则|A*|等于
设矩阵,问当k为何值时,存在可逆矩阵P,使得P-1AP为对角矩阵?并求出P和相应的对角矩阵.
设有三个线性无关的特征向量,求x和y应满足的条件.
假设:(1)函数y=f(x)(0≤x<+∞)满足条件f(0)=0和0≤f(x)≤ex-1;(2)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别相交于点P1和P2;(3)曲线y=f(x)、直线MN与x轴所围封闭图形的面积S
微分方程y"=2y’+2y=e2的通解为________.
设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是
从抛物线y=x2一1的任意一点P(t,t2—1)引抛物线y=x2的两条切线,求这两条切线的切线方程;
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.把向量β分别用α1,α2,α3,α4和它的极大线性无关组线性表出.
设f(x,y)=讨论函数f(x,y)在点(0,0)处的连续性与可偏导性.
随机试题
TheTVprogramsdidtakethetimeto_____viewersonhowtodonatetothefloodvictimsviaawebsite.
按照统一指挥原则,下列说法正确的是()
在一个单位中,由领导倡导成立的球迷协会属于()
下列关于肝炎的描述哪项是错误的
下列()业务涉及的税金登记应为借“应交税金”。
甲公司2018年以前执行《小企业会计准则》,由于甲公司公开发行股票、债券,同时因经营规模和企业性质变化而成为大中型企业,按照企业会计准则规定应当从2018年1月1日起转为执行《企业会计准则》。资料如下:资料一:甲公司2015年分别以450万元和110
现有三个番茄品种,A品种的基因型为AABBdd,B品种的基因型为AabbDD,C品种的基因型为aaBBDD,三对等位基因分别位于三对同源染色体上,并且分别控制叶形、花色和果形三对相对性状。请回答:如何运用杂交育种方法利用以上3个品种获得基因型为aabb
《吉檀迦利》是孟加拉著名诗人____的诺贝尔获奖作品。
Peoplethanktheirparentswithtwodays:Mother’sDay,onthesecondSundayinMay,andFather’sDay,onthethirdSundayinJu
Allthepeopleinthecityareopposed______thecommittee’splan.
最新回复
(
0
)