首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,一2,1)T,η2=(0,1,0,1)T是Ax=0的基础解系,则A的列向量组的极大线性无关组可以是
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,一2,1)T,η2=(0,1,0,1)T是Ax=0的基础解系,则A的列向量组的极大线性无关组可以是
admin
2018-06-14
36
问题
设A是5×4矩阵,A=(α
1
,α
2
,α
3
,α
4
),若η
1
=(1,1,一2,1)
T
,η
2
=(0,1,0,1)
T
是Ax=0的基础解系,则A的列向量组的极大线性无关组可以是
选项
A、α
1
,α
3
.
B、α
2
,α
4
.
C、α
2
,α
3
.
D、α
1
,α
2
,α
4
.
答案
C
解析
由Aη
1
=0,知α
1
+α
2
—2α
3
+α
4
=0. ①
由Aη
2
=0,知α
2
+α
4
=0. ②
因为n一r(A)=2,故必有r(A)=2.所以可排除(D).
由②知,α
2
,α
4
线性相关.故应排除(B).
把②代入①得α
2
+α
4
一2α
3
=0,即α
1
,α
3
线性相关,排除(A).
如果α
2
,α
3
线性相关,则r(α
1
,α
2
,α
3
,α
4
)=r(一2α
3
,α
2
,α
3
,—α
2
)=r(α
2
,α
3
)=1与r(A)=2相矛盾.所以选C.
转载请注明原文地址:https://kaotiyun.com/show/f1W4777K
0
考研数学三
相关试题推荐
求下列极限:
求下列极限:
求下列极限:
已知数列{xn}满足:x0=25,xn=arctanxn-1(n=1,2,3,…),证明{xn}的极限存在,并求其极限.
求出一个齐次线性方程组,使它的基础解系是η1=(2,-1,1,1)T,η2=(-1,2,4,7)T.
已知n元齐次线性方程组A1x=0的解全是A2x=0的解,证明A2的行向量可以由A1的行向量线性表出.若线性方程组(Ⅰ)A1x=b1和(Ⅱ)A2x=b2都有解,且(Ⅰ)的解全是(Ⅱ)的解,则(A2,b2)的行向量组可以由(A1,b1)的行向量组线
已知齐次线性方程组同解.求a,b,c的值.
已知ξ1=(0,0,1,0)T,ξ2=(-1,1,0,1)T是齐次线性方程组(Ⅰ)的基础解系,η1=(0,1,1,0)T,η2=(-1,2,2,1)T是齐次线性方程组(Ⅱ)的基础解系,求齐次线性方程组(Ⅰ)与(Ⅱ)的公共解.
(Ⅰ)求函数所满足的二阶常系数线性微分方程;(Ⅱ)求(Ⅰ)中幂级数的和函数y(x)的表达式.
随机试题
对于皮层诱发电位的描述,恰当的是
与人体免疫功能密切的维生素为()。
关于气与津液的关系,描述错误的是
A、苍术、陈皮、厚朴、甘草B、茵陈、栀子、大黄C、猪苓、茯苓、泽泻、阿胶、滑石D、猪苓、茯苓、泽泻、桂枝、白术E、附子、生姜、白术、茯苓、白芍猪苓汤的组成是
按我国《建设工程施工合同(示范文本)》的规定,工程施工过程中发生工程变更,合同中有类似变更工程价格,则( )确定变更价款。
国家质检总局对进出口化妆品实施分级监督检验管理制度,按照( )将进出口化妆品的监督检验分为放宽级和正常级。
下列财务指标中,影响可持续增长率的有()。
一个圆能把平面分成两个区域,两个圆可以把平面分成四个区域,问四个圆最多可能把平面分成多少个区域?()
法律的运行是一个从创制、实施到实现的过程。在这个过程中,起始性、关键性环节是
A、Laughingisalearnedbehavior.B、Laughingisagoodmedicinetopatients.C、Laughingiseasierthanbattlingwithanillness.
最新回复
(
0
)