首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4是四维非零列向量,A=(α1,α2,α3,α4),A*为A的伴随矩阵,又知方程组Aχ=0的基础解系为(1,0,2,0)T,则方程组A*χ=0基础解系为( ).
设α1,α2,α3,α4是四维非零列向量,A=(α1,α2,α3,α4),A*为A的伴随矩阵,又知方程组Aχ=0的基础解系为(1,0,2,0)T,则方程组A*χ=0基础解系为( ).
admin
2017-11-09
48
问题
设α
1
,α
2
,α
3
,α
4
是四维非零列向量,A=(α
1
,α
2
,α
3
,α
4
),A
*
为A的伴随矩阵,又知方程组Aχ=0的基础解系为(1,0,2,0)
T
,则方程组A
*
χ=0基础解系为( ).
选项
A、α
1
,α
2
,α
3
B、α
1
+α
2
,α
2
+α
3
,α
3
+α
1
C、α
2
,α
3
,α
4
或α
1
,α
2
,α
4
D、α
1
+α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
1
答案
C
解析
由Aχ=0的基础解系仅含有一个解向量知,R(A)=3,从而R(A
*
)=1,于是方程组A
*
χ=0的基础解系中含有3个解向量.
又A
*
A=A
*
(α
1
,α
2
,α
3
,α
4
)=|A|E=O,
所以向量α
1
,α
2
,α
3
,α
4
是方程组A
*
χ=0的解.
因为(1,0,2,0)
T
是Aχ=0的解,故有α
1
+2α
3
=0,即α
1
,α
3
线性相关.从而,向量组α
1
,α
2
,α
3
与向量组α
1
,α
2
,α
3
,α
4
均线性相关,故排除A、B、D选项.
事实上,由α
1
+2α
3
=0,得α
1
=0α
2
-2α
3
+0α
4
,即α
1
可由α
2
,α
3
,α
4
线性表示,又R(α
1
,α
2
,α
3
,α
4
)=3,所以α
2
,α
3
,α
4
线性无关,即α
2
,α
3
,α
4
为A
*
χ=0的一个基础解系.
故应选C.
转载请注明原文地址:https://kaotiyun.com/show/f6X4777K
0
考研数学三
相关试题推荐
设的敛散性,并证明你的结论.
设A与B均为正交矩阵,并且|A|+|B|=0.证明:A+B不可逆.
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.证明:向量组β,β+α1,β+α2,…,β+αt,线性无关.
已知三元二次型XTAX经正交变换化为2y12一y22一y32,又知矩阵B满足矩阵方程其中α=[1,1,一1]T,A*为A的伴随矩阵,求此二次型XTBX的表达式.
对于实数x>0,定义对数函数,依此定义试证:(1)=-lnx(x>0);(2)ln(xy)=lnx+lny(x>0,y>0).
设昆虫产k个卵的概率为,又设一个虫卵能孵化成昆虫的概率为p,若卵的孵化是相互独立的,问此昆虫的下一代有L条的概率是多少?
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.(1)二元函数的极限存在;(2)二元函数z=f(x,y)在点(x0,y0)的某个邻域内有界;(3)(4)F(x)=f(x,y0)在点x0处可微,G(y)=f
已知f(x)和g(x)在[a,b]上连续,在(a,b)内具有二阶导数,且在(a,b)内存在相等的最大值,又设f(a)=g(a),f(b)=g(b),试证明:存在ξ∈(a,b)使得f’’(ξ)=g’’(ξ)。
设g(x)在x=0的某邻域内连续且.又设f(x)在该邻域内存在二阶导数且满足x2f"(x)一[f’(x)]2=xg(x).则()
设f(x)=(1+x2)x2,g(x)=∫01—cosxsint2dt,则x→0时f(x)是g(x)的
随机试题
焊接场地应符合安全要求,否则会造成火灾、爆炸、触电事故。()
被评估企业持有A企业发行的债券30000元,发行期为4年,到期一次还本付息,年利率为15%。评估时债券的购入时间已满2年,当年的国库券利率为10%。评估人员通过对A企业的调查,认为该债券风险不大,考虑按2%作为风险报酬率。要求:分别以单利和复利计算方式计算
Whatexactlyisintelligence?Therearen’tanyeasyanswers.Despitetheprogressthathasbeenmadeingeneticsandpsychology,
简述艺术风格及其特征。
对白塞病的诊断有参考价值的项目是对多发性肌炎/皮肌炎的诊断有参考价值的是
生物体内“通用能量货币”是指()
关于滤过的影响因素的不正确表述是
位于城市市区的一家电视机生产企业(以上简称甲企业)和一家百货商场(以下简称乙商场)均为增值税一般纳税人。2015年3月份发生以下业务。(1)甲企业销售给乙商场一批电视机,不含税销售额为70万元,采用托收承付方式结算,货物已经发出,托收手续已经办妥,但尚未
质押
婴儿时期大脑皮质功能发育不够成熟,神经活动过程中兴奋与抑制不平衡,易兴奋,也易疲劳,对长期的刺激耐受力小,注意力很难持久,在从事某种活动后,大脑皮质的相应区域将由兴奋转入抑制,出现疲劳。因此,幼儿教师在安排幼儿一日生活时,应注意()。
最新回复
(
0
)