首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4是四维非零列向量,A=(α1,α2,α3,α4),A*为A的伴随矩阵,又知方程组Aχ=0的基础解系为(1,0,2,0)T,则方程组A*χ=0基础解系为( ).
设α1,α2,α3,α4是四维非零列向量,A=(α1,α2,α3,α4),A*为A的伴随矩阵,又知方程组Aχ=0的基础解系为(1,0,2,0)T,则方程组A*χ=0基础解系为( ).
admin
2017-11-09
65
问题
设α
1
,α
2
,α
3
,α
4
是四维非零列向量,A=(α
1
,α
2
,α
3
,α
4
),A
*
为A的伴随矩阵,又知方程组Aχ=0的基础解系为(1,0,2,0)
T
,则方程组A
*
χ=0基础解系为( ).
选项
A、α
1
,α
2
,α
3
B、α
1
+α
2
,α
2
+α
3
,α
3
+α
1
C、α
2
,α
3
,α
4
或α
1
,α
2
,α
4
D、α
1
+α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
1
答案
C
解析
由Aχ=0的基础解系仅含有一个解向量知,R(A)=3,从而R(A
*
)=1,于是方程组A
*
χ=0的基础解系中含有3个解向量.
又A
*
A=A
*
(α
1
,α
2
,α
3
,α
4
)=|A|E=O,
所以向量α
1
,α
2
,α
3
,α
4
是方程组A
*
χ=0的解.
因为(1,0,2,0)
T
是Aχ=0的解,故有α
1
+2α
3
=0,即α
1
,α
3
线性相关.从而,向量组α
1
,α
2
,α
3
与向量组α
1
,α
2
,α
3
,α
4
均线性相关,故排除A、B、D选项.
事实上,由α
1
+2α
3
=0,得α
1
=0α
2
-2α
3
+0α
4
,即α
1
可由α
2
,α
3
,α
4
线性表示,又R(α
1
,α
2
,α
3
,α
4
)=3,所以α
2
,α
3
,α
4
线性无关,即α
2
,α
3
,α
4
为A
*
χ=0的一个基础解系.
故应选C.
转载请注明原文地址:https://kaotiyun.com/show/f6X4777K
0
考研数学三
相关试题推荐
设f(x)=,则∫0xf(x)dx=________.
求幂级数的和函数.
设一部机器一天内发生故障的概率为,机器发生故障时全天停止工作.若一周5个工作日无故障,则可获利10万元;发生一次故障获利5万元;发生两次故障获利0元;发生三次及以上的故障亏损2万元,求一周内利润的期望值.
求函数的导数.
独立地重复进行某项试验,直到成功为止,每次试验成功的概率为p,假设前5次试验每次的试验费用为10元,从第6次起每次的试验费用为5元.试求这项试验的总费用的期望值a.
设X,Y是相互独立的随机变量,它们都服从参数为n,p的二项分布,证明:Z=X+Y服从参数为2n,p的二项分布.
设α1,α2,α3,β1,β2都是4维列向量,且4阶行列式|α1,α2,α3,β1|=m,|α1,α2,β2,α3|=n,则4阶行列式|α3,α2,α1,β1+β2|等于()
假设G=((x,y)|x2+y2≤r2}是以原点为圆心,半径为r的圆形区域,而随机变量X和Y的联合分布是在圆G上的均匀分布。试确定随机变量X和Y的独立性和相关性.
某考生想借张宇编著的《张宇高等数学18讲》,决定到三个图书馆去借,对每一个图书馆而言,有无这本书的概率相等;若有,能否借到的概率也相等,假设这三个图书馆采购、出借图书相互独立,求该生能借到此书的概率.
设讨论它们在点(0,0)处的①偏导数的存在性:②函数的连续性;③方向导数的存在性;④函数的可微性.
随机试题
下列关于总分类账户和明细分类账户说法正确的是()。
下列项目中,应计入材料采购成本的有()。
肠原性青紫症选用砷中毒选用
如下图所示电路,该电路的回路电压方程和电流I为( )。
李明出差返回途中遗失火车票,正确的处理是售票单位开具证明,加盖公章,李明单位会计科长和单位领导批准后,代作原始凭证。()
具有报关权的企业也具有进出口经营权。()
按照EPQ中国常模,属于典型内向的E量表T分划界值为()
从所给四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
整体的项目计划框架,需求规格说明,技术知识和业务知识,标准环境,设计文档,足够的资源,人员的组织结构应当是______所包含的内容。A)测试计划的整体目标B)测试项目输入标准C)测试项目输出标准D)测试实施策略
计算机网络是计算机技术与______技术相互渗透、密切结合的产物。
最新回复
(
0
)