首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ).
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ).
admin
2014-07-22
62
问题
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ).
选项
答案
构造辅助函数F(x)=f(x)-g(x),由题设有F(a)=F(b)=0.不妨设存在x
1
,x
2
∈(a,b),x
1
<x
2
,使得f(x
1
)=M=[*],g(x
2
)=M=[*],于是F(x
1
)=f(x
1
)-g(x
1
)≥0,F(x
2
)-g(x
2
)≤0,从而存在c∈[x
1
,x
2
][675*](a,b),使F(c)=0.在区间[a,c],[c,b]上分别利用罗尔定理知,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得F’(ξ
1
)=F’(ξ
2
)=0.再对F’(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,知存在ξ∈(ξ
1
,ξ
2
)[676*](a,b),有F"(ξ)=0,即f"(ξ)=g"(ξ).
解析
需要证明的结论与导数有关,自然联想到用微分中值定理,事实上,若令F(x)=f(x)-g(x),则问题转化为证明F"(ξ)=0,只需对F’(x)用罗尔定理,大键是找到F’(x)的端点函数值相等的区间(特别是两个一阶导数同时为零的点),而利用F(a)-F(b)=0,若能再找一点c∈(a,b),使得F(c)=0,则在区间[a,c],[c,b]上两次利用罗尔定理有一阶导函数相等的两点,再对F’(x)用罗尔定理即可.
转载请注明原文地址:https://kaotiyun.com/show/fR34777K
0
考研数学二
相关试题推荐
将函数y=sin(2x)展开为带有皮业诺余项的三阶麦克劳林公式为__________.
的垂直渐近线为___________.
若则f(x)=().
下列函数在(一1,1)内可微的是().
已知函数f(x)在(一∞,+∞)内具有二阶连续导数,且其一阶导函数f′(x)的图形如图8一1所示,则:f(x)的递减区间为___________.
设f(x)的原函数是F(x)>0,且F(0)=1,当x≥0时有f(x)F(x)=sin2(2x),求F(x).
设方程x2一xy+y2=1确定y为x的函数,求y′|(1,1),y"|(1,1).
设f(x)在(-∞,+∞)上具有二阶导数,且求
随机试题
设y=求y’及y".
患者,女,42岁,近几年来经量增多,经期延长。近2~3个月常感头晕、乏力。妇科检查:子宫呈不规则增大,如孕4个月大小,表面结节状突起,质硬。为明确诊断首要的检查是
A.黄曲霉毒素B.杂色曲霉毒素C.单端胞霉毒素D.玉米赤霉烯酮E.展青霉素主要作用于神经系统,引起感觉和运动机能障碍的霉菌毒素是
肝硬化最常见的并发症是
悬臂式桩板式挡墙适用于建筑边坡高H不超过()m。
下列关于管理用财务报表的说法中,正确的有()。
下列说法符合质量参股子公司的有()。
在我国负责主管防止船舶污染损害海洋环境的环境保护工作的机关是()。
Readthefollowingjobadvertisement.Aresentences16-22ontheoppositepage’Right’or’Wrong’?Ifthereisnotenoughinf
JosephWeizenbaum,professorofcomputerscienceatMIT,thinksthatthesenseofpoweroverthemachineultimatelycorruptsthe
最新回复
(
0
)