首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ).
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ).
admin
2014-07-22
84
问题
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ).
选项
答案
构造辅助函数F(x)=f(x)-g(x),由题设有F(a)=F(b)=0.不妨设存在x
1
,x
2
∈(a,b),x
1
<x
2
,使得f(x
1
)=M=[*],g(x
2
)=M=[*],于是F(x
1
)=f(x
1
)-g(x
1
)≥0,F(x
2
)-g(x
2
)≤0,从而存在c∈[x
1
,x
2
][675*](a,b),使F(c)=0.在区间[a,c],[c,b]上分别利用罗尔定理知,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得F’(ξ
1
)=F’(ξ
2
)=0.再对F’(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,知存在ξ∈(ξ
1
,ξ
2
)[676*](a,b),有F"(ξ)=0,即f"(ξ)=g"(ξ).
解析
需要证明的结论与导数有关,自然联想到用微分中值定理,事实上,若令F(x)=f(x)-g(x),则问题转化为证明F"(ξ)=0,只需对F’(x)用罗尔定理,大键是找到F’(x)的端点函数值相等的区间(特别是两个一阶导数同时为零的点),而利用F(a)-F(b)=0,若能再找一点c∈(a,b),使得F(c)=0,则在区间[a,c],[c,b]上两次利用罗尔定理有一阶导函数相等的两点,再对F’(x)用罗尔定理即可.
转载请注明原文地址:https://kaotiyun.com/show/fR34777K
0
考研数学二
相关试题推荐
设f(x)为偶函数,且可导,f"(0)≠0,则下列结论正确的是().
设函数f(x)在[a,b]时连续,在(a,b)内可导,f(x)≤0,求证:在(a,b)内,F′(x)≤0.
已知函数f(x)在(一∞,+∞)内具有二阶连续导数,且其一阶导函数f′(x)的图形如图8一1所示,则:f(x)的极小值点为____________.
已知函数f(x)在(一∞,+∞)内具有二阶连续导数,且其一阶导函数f′(x)的图形如图8一1所示,则:f(x)的极大值点为__________.
已知函数f(x)在(一∞,+∞)内具有二阶连续导数,且其一阶导函数f′(x)的图形如图8一1所示,则:f(x)的递减区间为___________.
已知函数f(x)在(一∞,+∞)内具有二阶连续导数,且其一阶导函数f′(x)的图形如图8一1所示,则:f(x)的递增区间为__________.
设方程x2一xy+y2=1确定y为x的函数,求y′|(1,1),y"|(1,1).
已知函数在x=0处连续,则k=___________.
随机试题
Asheartdiseasecontinuestobethenumber-onekillerintheUnitedStates,researchershavebecomeincreasinglyinterestedin
男性,46岁,车祸导致骨折并有大出血,病人有休克表现,应采取的体位是
患者男,36岁。转移性右下腹疼痛8小时入院,患者腹痛为阵发性疼痛,开始位于剑突下,4小时后疼痛转移至右下腹部,并有压痛、反跳痛,伴有恶心、呕吐,T38℃,无咳嗽、胸闷、气促。应予以下面哪些检查
患者,李某,平素有去公园晨练习惯,今晨在跑步时,与他人碰撞后争吵,因为情绪激动片刻后不明原因倒地不起,伴随有呕吐等症状,拨打120后急诊医生到现场后查体示意识障碍、出现脑膜刺激征,以颈强直最明显。影像学检查范围是
关于空心桥墩构造的说法,正确的是()。【2011年真题】
下列各项中不需要进行责任结转的是()。
下列行为不适用吊销生产许可证的是()。
关系R和S如下表所示,关系代数表达式Π1,4(R∞(下标)R.C<S.B S)的结果为(201),与该表达式等价的SQL语句为(202)。R关系S关系ABCAB
IfnooneobjectsMr.Benwillbethenextchairman.
LastmonthTomwentonholidaytoFrance.HecaughtthetrainfromLondontoDoverandthenwentbyboatacrosstheChannel.He
最新回复
(
0
)