首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为 x=k(1,-2,3)T+(1,2,-1)T,k为任意常数. 试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为 x=k(1,-2,3)T+(1,2,-1)T,k为任意常数. 试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
admin
2020-04-30
69
问题
设矩阵A=(α
1
,α
2
,α
3
),其中α
1
,α
2
,α
3
是4维列向量,已知非齐次线性方程组Ax=b的通解为
x=k(1,-2,3)
T
+(1,2,-1)
T
,k为任意常数.
试求α
1
,α
2
,α
3
的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
选项
答案
由题设条件可知ξ=(1,-2,3)
T
是对应的齐次线性方程组Ax=0的一个基础解系,所以r(A)=3-1=2;η=(1,2,-1)
T
为非齐次线性方程组Ax=b的一个特解.于是有 [*] 由(1)可得α
1
=2α
2
-3α
3
,即α
1
可用α
2
,α
3
线性表示,则
2
,α
3
线性无关,否则r(α
1
,α
2
,α
3
)=1与r(A)=2矛盾, 所以α
1
,α
2
,α
3
的一个极大线性无关组可取为α
2
,α
3
. 由(2)可得 b=α
1
+2α
2
-α
3
=4α
2
-4
3
.
解析
本题是抽象型非齐次线性方程组的典型情形.只要从题设条件求得对应齐次线性方程组Ax=0的一个基础解系与非齐次线性方程组Ax=b的一个特解即可.其中一个关键问题仍是确定系数矩阵A的秩,由此可知基础解系中包含线性无关解向量个数.
转载请注明原文地址:https://kaotiyun.com/show/fbv4777K
0
考研数学一
相关试题推荐
设A为3阶矩阵,P为3阶可逆矩阵,且若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=().
(2008年试题,一)函数一在点(0,1)处的梯度等于().
设二维随机变量(X,Y)服从二维正态分布,则随机变量ξ=X+Y与η=X-Y不相关的充分必要条件为
设f(x)在R上是以T为周期的连续奇函数,则下列函数中不是周期函数的是().
微分方程y’’+y=x2的通解为_____.
微分方程y"一2y’+2y=ex的通解为___________。
考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。若用“P→Q”表示可由
设f(x,y)为连续函数,则=__________,其中D:x2+y2≤t2.
下列命题中不正确的是()
设(1)通过将f(r,t)化为对θ的定积分,其中0≤θ≤2π;(2)求极限
随机试题
急性肾小球肾炎中医辨证分型除风水相搏外尚有
甲公司在一次省政府所举行的管道燃气供应的招标活动中中标,但参加投标活动的乙公司对此次招标活动不满,欲向省政府就此次招标活动申请听证。下列各选项中正确的是:
不论是由建设工程参与方的哪一方提出的设计变更,作出变更决定后都应由( )签发《工程变更单》,指示承包单位按变更的决定组织方可施工。
某新校区抗震模拟实验室工程,主体部分采用钢架结构,施工合同约定钢材由业主供料,其余材料均委托承包商采购。但承包商在以自有机械设备进行主体钢结构制作吊装过程中,由于业主供应钢材不及时导致承包商停工7天,则承包商计算施工机械窝工费时,应按()向业主提出
()是指由财政部发行的,有固定面值及票面利率,通过纸质媒介记录债权债务的国债。
学生的权利有哪些?
课程目标的基本特征有哪些?
某日,甲市振兴区某职业中学学生(14周岁)、吴某(15周岁)、郑某(女、14周岁)、汪某(16周岁)因网络赌博输钱,囊中羞涩,于是商量要弄点钱。见路人杜某随身携带挎包走来,决定抢包。吴某和郑某把风,汪某和周某上前拽走杜某挎包后欲逃跑,被杜某拽住。随即四人对
对违法犯罪分子的改造工作,是()的特殊预防工作。
某投资者在3个月后将获得一笔资金,并希望用该笔资金进行股票投资。但是,该投资者担心股市整体上涨从而影响其投资成本,在这种情况下,可采取()策略。
最新回复
(
0
)