首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为 x=k(1,-2,3)T+(1,2,-1)T,k为任意常数. 试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为 x=k(1,-2,3)T+(1,2,-1)T,k为任意常数. 试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
admin
2020-04-30
67
问题
设矩阵A=(α
1
,α
2
,α
3
),其中α
1
,α
2
,α
3
是4维列向量,已知非齐次线性方程组Ax=b的通解为
x=k(1,-2,3)
T
+(1,2,-1)
T
,k为任意常数.
试求α
1
,α
2
,α
3
的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
选项
答案
由题设条件可知ξ=(1,-2,3)
T
是对应的齐次线性方程组Ax=0的一个基础解系,所以r(A)=3-1=2;η=(1,2,-1)
T
为非齐次线性方程组Ax=b的一个特解.于是有 [*] 由(1)可得α
1
=2α
2
-3α
3
,即α
1
可用α
2
,α
3
线性表示,则
2
,α
3
线性无关,否则r(α
1
,α
2
,α
3
)=1与r(A)=2矛盾, 所以α
1
,α
2
,α
3
的一个极大线性无关组可取为α
2
,α
3
. 由(2)可得 b=α
1
+2α
2
-α
3
=4α
2
-4
3
.
解析
本题是抽象型非齐次线性方程组的典型情形.只要从题设条件求得对应齐次线性方程组Ax=0的一个基础解系与非齐次线性方程组Ax=b的一个特解即可.其中一个关键问题仍是确定系数矩阵A的秩,由此可知基础解系中包含线性无关解向量个数.
转载请注明原文地址:https://kaotiyun.com/show/fbv4777K
0
考研数学一
相关试题推荐
函数f(x,y,z)=x2+y2+z2在点(1,2,0)处沿向量n(1,2,2)的方向导数为()
(2005年)设函数u(x,y)=φ(x+y)+φ(x—y)+其中函数φ具有二阶导数,ψ具有一阶导数,则必有()
向量组α1,α2,…,αs线性无关的充要条件是().
已知X的概率密度f(x)=,aX+b~N(0,1)(a>0),则常数A=_______,a=_______,b=_______。
设α1=(1,2,-1,0)T,α2=(1,1,0,2)T,α3=(2,1,1,α)T,若由α1,α2,α3形成的向量空间的维数是2,则α=_______。
曲线y=x2-2x和直线y=0,x=1,x=3所围成的平面图形绕x轴旋转一周所得旋转体的体积为______,绕y轴旋转一周所得旋转体的体积为_______.
设球体x2+y2+z2≤2az(如图1.6-2)中任一点的密度与该点到坐标原点的距离成正比,求此球体的重心.
设x→0时,(1+sinx)x一1是比xtanxn低阶的无穷小,而xtanxn是比(一1)ln(1+x2)低阶的无穷小,则正整数n等于()
设D是Oxy平面上以A(1,1),B(-1,1)和C(-1,-1)为顶点的三角形区域,则I=sin(xy)+4]dxdy=__________.
随机试题
一个时期某一阶层或某一行业的人群对文化问题所持的态度和看法,或在某一文化事象里所表觋的意识形态,称作()
设z=z(x,y)是由x2z+2y2z2+x=0确定的函数,求.
阴损及阳的病机主要是指()(2004年第7题)
风痧皮疹特点为
土地市场、劳动力市场、()相应地构成市场体系的三大支柱。
某加工厂参照《企业职工伤亡事故分类》(GB6441)对厂内危险、有害因素进行分类,正确的是()。
软件操作岗位主要负责对计算机机内的会计数据进行分析。 ( )
产业技术进步的三阶段是指()。
2009年2月10日,甲公司与乙公司签订一份购买1000台A型微波炉的合同,约定由乙公司3月10日前办理托运手续,货到付款。乙公司如期办理了托运手续,但装货时多装了50台B型微波炉。甲公司于3月13日与丙公司签订合同,将处于运输途中的前述合同项下的1
Accordingtothestudy,failingtodealwithinequalityintheworkplace______.Itcanbeinferredfromthetextthat______.
最新回复
(
0
)