首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为 x=k(1,-2,3)T+(1,2,-1)T,k为任意常数. 试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为 x=k(1,-2,3)T+(1,2,-1)T,k为任意常数. 试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
admin
2020-04-30
41
问题
设矩阵A=(α
1
,α
2
,α
3
),其中α
1
,α
2
,α
3
是4维列向量,已知非齐次线性方程组Ax=b的通解为
x=k(1,-2,3)
T
+(1,2,-1)
T
,k为任意常数.
试求α
1
,α
2
,α
3
的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
选项
答案
由题设条件可知ξ=(1,-2,3)
T
是对应的齐次线性方程组Ax=0的一个基础解系,所以r(A)=3-1=2;η=(1,2,-1)
T
为非齐次线性方程组Ax=b的一个特解.于是有 [*] 由(1)可得α
1
=2α
2
-3α
3
,即α
1
可用α
2
,α
3
线性表示,则
2
,α
3
线性无关,否则r(α
1
,α
2
,α
3
)=1与r(A)=2矛盾, 所以α
1
,α
2
,α
3
的一个极大线性无关组可取为α
2
,α
3
. 由(2)可得 b=α
1
+2α
2
-α
3
=4α
2
-4
3
.
解析
本题是抽象型非齐次线性方程组的典型情形.只要从题设条件求得对应齐次线性方程组Ax=0的一个基础解系与非齐次线性方程组Ax=b的一个特解即可.其中一个关键问题仍是确定系数矩阵A的秩,由此可知基础解系中包含线性无关解向量个数.
转载请注明原文地址:https://kaotiyun.com/show/fbv4777K
0
考研数学一
相关试题推荐
设f(x)=|x-1/2|,bn=2(n=1,2,...),令S(x)=,则S(-9/4)=
A、 B、 C、 D、 B
(16年)随机试验E有三种两两不相容的结果A1,A2,A3,且三种结果发生的概率均为,将试验E独立重复做2次,X表示2次试验中结果A1发生的次数,Y表示2次试验中结果A2发生的次数,则X与Y的相关系数为
设λ1,λ2是n阶矩阵A的特征值,α1,α2分别是A的对应于λ1,λ2的特征向量,则()
设,则A,B的关系为().
已知ξ1=(一3,2,0)T,ξ1=(一1,0,一2)T是方程组的两个解,则此方程组的通解是______.
设n维列向量α=(a,0,…,0,a)T,其中a<0,又A=E-ααT,,且B为A的逆矩阵,则a=________.
微分方程y’’+y=x2的通解为_____.
下列反常积分收敛的是()
设u=f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则|(0,1,一1)=_________.
随机试题
甲公司是ABC会计师事务所的常年审计客户,主要从事化工产品的生产和销售,A注册会计师负责审计甲公司2014年度财务报表。重要性水平为25万元。相关资料如下:资料一:甲公司在董事会下设审计委员会,审计委员会全部由独立董事和非行政董事组成。审计委员会选
X理论和Y理论的提出者是()
在Windows7中,文件被放入回收站后___________。
可摘局部义齿基托所不具备的作用是
施工单位提供的饮用水必须达到()标准。
某公司进口初级形状的酚醛树脂(法定检验商品)和焊丝(非法定检验商品),分20个托盘装于一个20英尺集装箱运输至天津新港,同批向海关申报,关于该批货物进口操作错误的表述是:
如图所示,已知抛物线与x轴交于A(一1,0),与y轴交于点C(0,3),且对称轴为直线x=1。求抛物线的解析式;
在国家创新体系的各要素中,()的功能是知识创新与知识应用。
Nowadays,people’slifestylesarechanging,whichhasresultedinthedemandforfastfoods.Usuallyonebacteriumissufficien
"Ithurtsmemorethanyou",and"Thisisforyourowngood."Thesearethe【C1】______mymotherusedtomakeyearsagowhenIhad
最新回复
(
0
)