首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(13年)设奇函数f(x)在[一1,1]上具有2阶导数,且f(1)=1.证明: (I)存在ξ∈(0,1),使得f’(ξ)=1; (Ⅱ)存在η∈(一1,1),使得f"(η)+f’(η)=1.
(13年)设奇函数f(x)在[一1,1]上具有2阶导数,且f(1)=1.证明: (I)存在ξ∈(0,1),使得f’(ξ)=1; (Ⅱ)存在η∈(一1,1),使得f"(η)+f’(η)=1.
admin
2017-04-20
58
问题
(13年)设奇函数f(x)在[一1,1]上具有2阶导数,且f(1)=1.证明:
(I)存在ξ∈(0,1),使得f’(ξ)=1;
(Ⅱ)存在η∈(一1,1),使得f"(η)+f’(η)=1.
选项
答案
(I)因为f(x)是区间[一1,1]上的奇函数,所以f(0)=0. 因为函数f(x)在区间[0,1]上可导,根据微分中值定理,存在ξ∈(0,1),使得 f(1)-f(0)=f’(ξ) 又因为f(1)=1,所以f’(ξ)=1. (Ⅱ)因为f(x)是奇函数,所以f’(x)是偶函数,故f’(一ξ)=f’(ξ)=1. 令F(x)=[f’(x)一1]e
x
,则F(x)可导,且F(-ξ)=F(ξ)=0. 根据罗尔定理,存在η∈(一ξ,ξ)[*](一1,1),使得F’(η)=0. 由F’(η)=[f
解析
转载请注明原文地址:https://kaotiyun.com/show/fgu4777K
0
考研数学一
相关试题推荐
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y’(0)=3/2的解.
设曲线L:f(x,y)=l(f(x,y)具有一阶连续偏导数),过第Ⅱ象限内的点M和第N象限内的点N,F为己上从点M到点N的一段弧,则下列积分小于零的是
考虑二元函数的下面4条性质:①f(x,y)在点(xo,yo)处连续;②f(x,y)在点(xo,yo)处的两个偏导数连续;③f(x,y)在点(xo,yo)处可微;④f(x,y)在点(xo,yo)处的两个偏导数存在.若用“P→Q”表示
计算曲面积分2x3dydz+2y3dzdx+3(z2-1)dxdy,其中∑是曲面z=1-x2-y2(z≥0)的上侧.
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
设半径为R的球面∑的球心在定球面x2+y2+z=a2(a>0)上,问当R为何值时,球面∑在定球面内部的那部分的面积最大.
设a>0,f(x)=g(x)=,而D表示整个平面,则I==__________.
设函数Fn(x)=其中n=1,2,3,…为任意自然数,f(x)为[0,+∞)上正值连续函数.求证:Fn(x)在(0,+∞)存在唯一零点x0;
设a1,a2,…,an为任意实数,求证方程a1cosx+a2cos2x+…+ancosnx=0在(0,π)内必有实根.
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0,证明:存在ξ∈(0,π),使得f’(ξ)=0.
随机试题
2015年全国国有建设用地供应总量53万公顷,比上年下降12.5%。其中,工矿仓储用地12万公顷,下降15.2%;房地产用地12万公顷,下降20.9%;基础设施等其他用地29万公顷,下降7.1%。2015年水资源总量28306亿立方米。全年平均降水量64
该患者最可能的诊断是对诊断最有价值的检查是
A.根尖区弥散性骨质破坏,边界不清B.根尖偏心性直径不超过1cm的圆形透射影,边界清楚C.根尖周透射性病变,形状规则,边界有致密线条影D.根尖呈球状增生E.根尖区骨质密度增高,与正常组织分界不清根尖周肉芽肿的X线表现是()
【背景材料】某施工单位承建一南方沿海城市的大型体育馆机电安装工程。合同工期为10个月,于2004年11月10日开工,2005年9月10日竣工。该工程的特点是各类动力设备包括冷冻机组、水泵、集中空调机组、变配电装置等,均布置在有通风设施和排
总分类账最常用的格式为( )。
我国企业债券上市的最终批准权属于()。
()是公司债券与公司股票的区别。
ThepositionofchildreninAmericanfamilyandsocietyisnolongerwhatisusedtobe.The【B1】_________familyincolonialNorth
边防治安工作主要包括( )。
垄断资本控制传播业的主要方式有哪些?(华中农业大学,2010年)
最新回复
(
0
)