首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(13年)设奇函数f(x)在[一1,1]上具有2阶导数,且f(1)=1.证明: (I)存在ξ∈(0,1),使得f’(ξ)=1; (Ⅱ)存在η∈(一1,1),使得f"(η)+f’(η)=1.
(13年)设奇函数f(x)在[一1,1]上具有2阶导数,且f(1)=1.证明: (I)存在ξ∈(0,1),使得f’(ξ)=1; (Ⅱ)存在η∈(一1,1),使得f"(η)+f’(η)=1.
admin
2017-04-20
76
问题
(13年)设奇函数f(x)在[一1,1]上具有2阶导数,且f(1)=1.证明:
(I)存在ξ∈(0,1),使得f’(ξ)=1;
(Ⅱ)存在η∈(一1,1),使得f"(η)+f’(η)=1.
选项
答案
(I)因为f(x)是区间[一1,1]上的奇函数,所以f(0)=0. 因为函数f(x)在区间[0,1]上可导,根据微分中值定理,存在ξ∈(0,1),使得 f(1)-f(0)=f’(ξ) 又因为f(1)=1,所以f’(ξ)=1. (Ⅱ)因为f(x)是奇函数,所以f’(x)是偶函数,故f’(一ξ)=f’(ξ)=1. 令F(x)=[f’(x)一1]e
x
,则F(x)可导,且F(-ξ)=F(ξ)=0. 根据罗尔定理,存在η∈(一ξ,ξ)[*](一1,1),使得F’(η)=0. 由F’(η)=[f
解析
转载请注明原文地址:https://kaotiyun.com/show/fgu4777K
0
考研数学一
相关试题推荐
[*]
将13个分别写有A、A、A、C、E、H、I、I、M、M、N、T、T的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN”的概率.
设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1等于
设f(x,y)在点(0,0)的某邻域内连续,且满足则函数f(x,y)在点(0,0)处().
微分方程xyˊ+y=0满足初始条件y(1)=2的特解为________.
设3阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别是α1=(﹣1,﹣1,1)T,α2=(1,﹣2,﹣1)T.(I)求A的属于特征值3的特征向量;(Ⅱ)求矩阵A.
假设一大型设备在任何长为t的时间内发生故障的次数N(t)服从参数为λt的泊松分布,(I)求相继两次故障之间时间间隔T的概率分布;(Ⅱ)求在设备已经无故障工作8小时的情形下,再无故障工作8小时的概率Q.
(2009年试题,17)椭球面S1是椭圆绕x轴旋转而成,圆锥面S2是过点(4,0)且与椭圆相切的直线绕轴旋转而成.求S1及S2的方程;
(1998年试题,九)设y=f(x)是区间[0,1]上的任一非负连续函数.试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的曲边梯形面积;
若视∑为曲面x2+y2+z2=a2(y≥0,z≥0)的上侧,则当f(x,y,z)为下述选项中的函数(),曲线积分。
随机试题
有6个不同国籍的人,他们的名字分别为:A、B、C、D、E和F;他们的国籍分别是:美国、德国、英国、法国、俄罗斯和意大利(名字顺序与国籍顺序不一定一致)。现已知下列条件:(1)A和美国人是医生。(2)E和俄罗斯人是教师。(3)C
以下ACS高危程度分类,正确的是()
(2015年第44题)下列可以发生坏疽的病变是
作业成本法认为,将成本分配到成本对象的形式有()。
某些简报需加编者“按语”,按语的位置在()。
关于平均失业持续期表述错误的是()。
YouaregoingtoreadalistofheadingsandatextaboutsellingyourownproductviathenetChoosethemostsuitableheading
下列哪一项是执行打开文件操作时由操作系统返回的?()
下列关于OSPF协议的描述中,错误的是()。
Couldthereasonfortheworld’seconomicmisfortunesallcomedowntofingerlength?Althoughcertainlyanoversimplificationo
最新回复
(
0
)