首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(13年)设奇函数f(x)在[一1,1]上具有2阶导数,且f(1)=1.证明: (I)存在ξ∈(0,1),使得f’(ξ)=1; (Ⅱ)存在η∈(一1,1),使得f"(η)+f’(η)=1.
(13年)设奇函数f(x)在[一1,1]上具有2阶导数,且f(1)=1.证明: (I)存在ξ∈(0,1),使得f’(ξ)=1; (Ⅱ)存在η∈(一1,1),使得f"(η)+f’(η)=1.
admin
2017-04-20
115
问题
(13年)设奇函数f(x)在[一1,1]上具有2阶导数,且f(1)=1.证明:
(I)存在ξ∈(0,1),使得f’(ξ)=1;
(Ⅱ)存在η∈(一1,1),使得f"(η)+f’(η)=1.
选项
答案
(I)因为f(x)是区间[一1,1]上的奇函数,所以f(0)=0. 因为函数f(x)在区间[0,1]上可导,根据微分中值定理,存在ξ∈(0,1),使得 f(1)-f(0)=f’(ξ) 又因为f(1)=1,所以f’(ξ)=1. (Ⅱ)因为f(x)是奇函数,所以f’(x)是偶函数,故f’(一ξ)=f’(ξ)=1. 令F(x)=[f’(x)一1]e
x
,则F(x)可导,且F(-ξ)=F(ξ)=0. 根据罗尔定理,存在η∈(一ξ,ξ)[*](一1,1),使得F’(η)=0. 由F’(η)=[f
解析
转载请注明原文地址:https://kaotiyun.com/show/fgu4777K
0
考研数学一
相关试题推荐
设f(x)在(-∞,+∞)上有连续导数,且m≤f(x)≤M
[*]
计算曲面积分2x3dydz+2y3dzdx+3(z2-1)dxdy,其中∑是曲面z=1-x2-y2(z≥0)的上侧.
设f(x,y)在点(0,0)的某邻域内连续,且满足则函数f(x,y)在点(0,0)处().
求微分方程y〞+5yˊ+6y=2e-x的通解.
设n元线性方程组Ax=b,其中(I)证明行刿式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
设D为曲线y=x3与直线y=x围成的两块区域,求二重积分
设当x→x0时,α(x),β(x)都是无穷小(β(x)≠0),则当x→x0时,下列表达式中不一定为无穷小的是()
设函数f(x)在[0,π]上连续,且f(x)sinxdx=0,f(x)cosxdx=0.证明:在(0,π)内.f(x)至少有两个零点.
随机试题
Musiccomesinmanyforms,mostcountrieshaveastyleoftheirown.【C1】______theturnofthecenturywhenjazzwasborn,Americ
下列关于核分裂象的叙述,正确的是
下列哪项属于子宫颈炎愈合过程
(2010年案例分析第71—75题)东方市城南区飞天广告公司诉东方市城北区太阳食品公司拖欠广告费40万元纠纷案件,经城北区人民法院审理后,判决太阳食品公司败诉,太阳食品公司不服,上诉至东方市中级人民法院,市中级人民法院作出终审判决,驳回上诉,维持原判。由于
杨冉是一起抢劫案的被害人,在该案的侦查阶段,杨冉申请某侦查人员回避,但被驳回,对此,杨冉可以:
以下关于二手个人住房贷款的说法中,正确的是()。
为了适应加入WTO的形势需要,中国外经贸部新设了世界贸易组织司、中国政府世贸组织通报咨询局、进出口公司贸易局三司局,这说明了( )。
下列SQL查询语句中,与下面查询设计视图所示的查询结果等价的是()。
打开考生文件夹下的演示文稿yswg.pptx,按照下列要求完成对此文稿的修饰并保存。第五张幻灯片的标题为“软件项目管理”。在第一张幻灯片前插入版式为“比较”的新幻灯片,将第三张幻灯片的标题和图片分部移到第一张幻灯片左侧的小标题和内容区。同样,将第四张
InSeptember,inBritain,youmayseealotofbirds【C1】______onroofsandtelegraphwires.Thesebirdsareswallows.Theyare【C
最新回复
(
0
)