首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[一a,a](a>0)上有四阶连续的导数,存在. (1)写出f(x)的带拉格朗日余项的麦克劳林公式; (2)证明:存在ξ1,ξ2∈[一a,a],使得
设f(x)在[一a,a](a>0)上有四阶连续的导数,存在. (1)写出f(x)的带拉格朗日余项的麦克劳林公式; (2)证明:存在ξ1,ξ2∈[一a,a],使得
admin
2020-03-10
69
问题
设f(x)在[一a,a](a>0)上有四阶连续的导数,
存在.
(1)写出f(x)的带拉格朗日余项的麦克劳林公式;
(2)证明:存在ξ
1
,ξ
2
∈[一a,a],使得
选项
答案
(1)由[*]存在,得f(0)=0,f’(0)=0,f"(0)=0,则f(x)的带拉格朗日余项的麦克劳林公式为f(x)=[*],其中ξ介于0与x之间. (2)上式两边积分得[*] 因为f
(1)
(x)在[一a,a]上为连续函数,所以f
(4)
(x)在[一a,a]上取到最大值M和最小值m,于是有mx
4
≤f
(4)
(ξ)x
4
≤Mx
4
, [*] a
5
f
(4)
(ξ)=60∫
-a
a
f(x)dx. 再由积分中值定理,存在ξ
2
∈[-a,a],使得 a
5
f
(4)
(ξ)=60∫
-a
a
f(x)dx=120af(ξ
2
),即a
4
f
(4)
(ξ
1
)=120f(ξ
2
).
解析
转载请注明原文地址:https://kaotiyun.com/show/fjD4777K
0
考研数学三
相关试题推荐
已知y=x/lnx是微分方程y’=y/x+φ(x/y)的解,则φ(x/y)的表达式为
化为极坐标系中的累次积分为()
设A是m×n阶矩阵,则下列命题正确的是().
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是
设n阶矩阵A与B等价,则必有
以下3个命题:①若数列{un}收敛于A,则其任意子数列必定收敛于A;②若单调数列{xn}的某一子数列收敛于A,则该数列必定收敛于A;③若数列{x2n}与{x2n+1}都收敛于A,则数列{xn}必定收敛于A.正确的个数为()
设函数f(x)在区间(-δ,δ)内有定义,若当x∈(-δ,δ)时,恒有|f(x)|≤x2,则x=0必是f(x)的()
在全概率公式P(B)=P(Ai)P(B|Ai)中,除了要求条件B是任意随机事件及P(Ai)>0(i=1,2,…,n)之外,还可以将其他条件改为()
设(a2n—1+a2n)收敛,则()
设总体X的概率密度为X1,…,Xn为来自X的一个简单随机样本,求θ的矩估计量。
随机试题
患者男,60岁。无痛性全程肉眼血尿,伴腰痛,消瘦,体重下降;查体:腹软,未扪及明显包块,肾区叩痛(一)。全血细胞计数:白细胞13×109/L,中性粒细胞85%,肾功能肌酐60μmol/L,尿素氮6.1mg/L,血沉20mm/h,尿常规:红细胞(++),尿细
2016年7月13日15时,某医院报告,该院急诊室收了7名患者,均表现恶心、呕吐、腹痛、腹泻、呼吸困难、全身皮肤及黏膜呈现青紫色,其中3人症状严重,出现休克,正在抢救;1名儿童已经死亡。据了解,都是与食用某摊点所售“卤鸡腿”有关。随后2小时内,又有3家医院
英山企业是英国一家贸易公司和中国一家生产厂家在深圳设立的一个中外合作经营企业,以下对于其管理层说法正确的是:
“买者自负”原则的含义是()。
以下不符合回避制度规定的是()。
希腊城邦
请在【答题】菜单下选择【进入考生文件夹】命令,并按照题目要求完成下面的操作。注意:以下的文件必须都保存在考生文件夹下。某出版社的编辑小刘手中有一篇有关财务软件应用的书稿“会计电算化节节高升.docx”,打开该文档,按下列要求帮助小刘对书
考生文件夹中有Table.xls工作表,按要求对此工作表完成如下操作:1.以下为若干个国家的教育开支与国民生产总值的数据,建立数据表(存放在A1:D4的区域内)并计算在国民生产总值中的教育开支“所占比例”(保留小数点后面两位)。其计算公式是
Thegovernmentistobanpaymentstowitnessesbynewspapersseekingtobuyuppeopleinvolvedinprominentcases【C1】______thet
ClocksthroughTimeIttookhumanbeingalongtimetoinventdiversewaysfortellingtime.About3000yearsagopeoplefir
最新回复
(
0
)