首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶非齐次线性方程y"+p(x)y’+q(x)y=f(x) ①的3个解,且 则式①的通解为 ________ .
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶非齐次线性方程y"+p(x)y’+q(x)y=f(x) ①的3个解,且 则式①的通解为 ________ .
admin
2015-07-22
96
问题
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y
1
(x),y
2
(x)与y
3
(x)是二阶非齐次线性方程y"+p(x)y’+q(x)y=f(x) ①的3个解,且
则式①的通解为 ________ .
选项
答案
y=C
1
(y
1
一y
2
)+C
2
(y
2
一y
3
)+y
1
,其中C
1
,C
2
为任意常数
解析
由非齐次线性方程的两个解,可构造出对应的齐次方程的解,再证明这样所得到的解线性无关便可.
y
1
一y
2
与y
2
~y
3
均是式①对应的线性齐次方程
y"+p(x)y’+q(x)y=0 ②
的两个解.今证它们线性无关.事实上,若它们线性相关,则存在两个不全为零的常数k
1
与k
2
使
k
1
(y
1
一y
2
)+k
2
(y
2
一y
3
)=0. ③
设k
1
≠0,又由题设知y
2
一y
3
≠0,于是式③可改写为
矛盾。若k
1
=0,由y
2
—y
1
≠0,故由式③推知k
2
=0矛盾.这些矛盾证得y
1
一y
2
与y
2
—y
3
线性无关.
于是 Y=C
1
(y
1
一y
2
)+C
2
(y
2
一y
3
) ④
为式②的通解,其中C
1
,C
2
为任意常数,从而知
y=C
1
(y
1
一y
2
)+C
2
(y
2
一y
3
)+y
1
⑤为式①的通解.
转载请注明原文地址:https://kaotiyun.com/show/gSU4777K
0
考研数学三
相关试题推荐
2022年中央一号文件指出,大力发展县域范围内比较优势明显、带动农业农村能力强、就业容量大的产业,推动形成“()”发展格局。
要以规范和约束()为重点,构建党统一指挥、全面覆盖、权威高效的监督体系,把()同国家机关监督、民主监督、司法监督、群众监督、舆论监督贯通起来。
对社会主义初级阶段的认识,以下说法正确的有()。①经济发展水平是决定初级阶段的唯一条件②要从整个社会主义事业发展全局来认识③必须全面把握,综合考量④从来都不是单纯从经济发展水平一个因素来看的
设α1,α2,…,αr(r≤n)是互不相同的数,αi=(1,αi,αi2,…,αin-1)(i=1,2,…,r),问α1,α2,…,αr是否线性相关?
设z=xf(y/x)+(x-1)ylnx,其中f是任意二阶可微函数,求证:
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有().
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性无关?
设矩阵已知线性方程组AX=β有解但不唯一,试求(I)a的值;(Ⅱ)正交矩阵Q,使QTAQ为对角矩阵.
设f(x)是连续函数,F(x)是f(x)的原函数,则().
设求f’(x).
随机试题
阅读《宝玉挨打》中贾政说的两段话,然后回答下列小题。“你们问问他干的勾当,可饶不可饶!素日皆是你们这些人把他酿坏了,到这步田地,还来劝解!明日酿到他弑父弑君,你们才不劝不成?”“倒休提这话!我养了这不肖的孽障,我已不孝;平昔教训他一番,又有众人护持;不
A.癌前病变B.交界性肿瘤C.癌肉瘤D.原位癌E.非肿瘤性病变胃窦部粘膜重度不典型性增生
(2010年)辐射换热过程中能量属性及转换与导热和对流换热过程不同,下列错误的是()。
GIS软件系统通常由系统软件、GIS专业软件和()组成。
人民警察必须以()为活动准则。
7,9,11,15,23,55,()
以HTML和HTTP协议为基础的服务称为______服务。
数据库DB、数据库系统DBS、数据库管理系统DBMS之间的关系是()。
【1】【8】
A、TheWhiteHousewarnedthemnottodonow.B、Thepanelofexpertsobjectedtheproposals.C、NASAdidn’tgetadequatemoney.D、
最新回复
(
0
)