首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶非齐次线性方程y"+p(x)y’+q(x)y=f(x) ①的3个解,且 则式①的通解为 ________ .
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶非齐次线性方程y"+p(x)y’+q(x)y=f(x) ①的3个解,且 则式①的通解为 ________ .
admin
2015-07-22
73
问题
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y
1
(x),y
2
(x)与y
3
(x)是二阶非齐次线性方程y"+p(x)y’+q(x)y=f(x) ①的3个解,且
则式①的通解为 ________ .
选项
答案
y=C
1
(y
1
一y
2
)+C
2
(y
2
一y
3
)+y
1
,其中C
1
,C
2
为任意常数
解析
由非齐次线性方程的两个解,可构造出对应的齐次方程的解,再证明这样所得到的解线性无关便可.
y
1
一y
2
与y
2
~y
3
均是式①对应的线性齐次方程
y"+p(x)y’+q(x)y=0 ②
的两个解.今证它们线性无关.事实上,若它们线性相关,则存在两个不全为零的常数k
1
与k
2
使
k
1
(y
1
一y
2
)+k
2
(y
2
一y
3
)=0. ③
设k
1
≠0,又由题设知y
2
一y
3
≠0,于是式③可改写为
矛盾。若k
1
=0,由y
2
—y
1
≠0,故由式③推知k
2
=0矛盾.这些矛盾证得y
1
一y
2
与y
2
—y
3
线性无关.
于是 Y=C
1
(y
1
一y
2
)+C
2
(y
2
一y
3
) ④
为式②的通解,其中C
1
,C
2
为任意常数,从而知
y=C
1
(y
1
一y
2
)+C
2
(y
2
一y
3
)+y
1
⑤为式①的通解.
转载请注明原文地址:https://kaotiyun.com/show/gSU4777K
0
考研数学三
相关试题推荐
“卧看满天云不动,不知云与我俱东”“不疑行舫动,唯看远树来”“坐地日行八万里,巡天遥看一千河”等诗句反映了运动和静止的关系。下列关于运动和静止关系的说法,错误的是
1990年4月4日,第七届全国人大第三次会议审议并通过《中华人民共和国香港特别行政区基本法》,这是“一国两制”方针由构想变为现实进程中里程碑式的事件。30年星移斗转,香港基本法经历了实践的充分检验,展现出强大生命力。实践证明,这是一部能够为“一国两制”伟
设α1=(2,-1,3,0),α2=(1,2,0,-2),α3=(0,-5,3,4),α4=(-1,3,t,0),则________时,α1,α2,α3,α4线性相关.
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
求密度为常数μ,半径为R的球体x2+y2+z2≤R2对位于点(0,0,a)(a>R)处单位质点的引力,并说明该引力如同将球的质量集中在球心时两质点间的引力.
求下列参数方程所确定的函数的二阶导数d2y/dx2.设f〞(t)存在且不为零.
根据级数收敛与发散的定义判别下列级数的收敛性,并求出其中收敛级数的和:
设a=3i+5j-2k,b=2i+j+9k,试求λ的值,使得(1)λa+b与z轴垂直;(2)λa+b与a垂直,并证明此时|λa+b|取最小值.
A是n阶矩阵,且A3=0,则().
随机试题
渊博的知识是导游人员的立业之基。()
甲亢危象的治疗,下列哪组最理想?
黄牛,5岁,高温季节田间使役时,突然发病,呼吸困难,流泡沫状鼻液,黏膜发绀。体温40.8℃,呼吸60次/分钟,脉搏98次/分钟。肺部听诊湿啰音。X线影像显示肺部阴影加重,肺门血管纹理显著。血气分析最可能异常的是
A.不同的核酸链经变性处理,它们之间形成局部的双链B.一小段核苷酸聚合体的单链,用放射性核素或生物素来标记其末端或全链C.运输氨基酸D.单股DNA恢复成双股DNAE.50%双链DNA变性时的温度tRNA的生理功能是
患者,男性,63岁。心力衰竭,自诉稍事活动即出现呼吸困难、乏力、心悸等症状,该老人的活动原则是
关于平板玻璃特性的说法,正确的有()。
下列各项中,不应计入交易性金融资产入账价值的有()。
尽管环境保护任务艰巨,但却迫在眉睫。不容_________。经济发展与环境保护不是对立的关系:一方面,经济发展一定要以环境的_________能力为基础;另一方面,环境保护_________的是粗放型的经济发展模式,不会阻碍经济的健康发展。依次填入画横线部
事务是由一系列操作组成的,事务的执行表现为事务中各个操作的执行。每个事务应具有结束操作。当一个事务发生故障需要终止并取消所有已执行的数据修改时应执行________操作。
IcanforgiveamistakebutIcan’tforgive(honest)______.
最新回复
(
0
)