首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶非齐次线性方程y"+p(x)y’+q(x)y=f(x) ①的3个解,且 则式①的通解为 ________ .
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶非齐次线性方程y"+p(x)y’+q(x)y=f(x) ①的3个解,且 则式①的通解为 ________ .
admin
2015-07-22
86
问题
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y
1
(x),y
2
(x)与y
3
(x)是二阶非齐次线性方程y"+p(x)y’+q(x)y=f(x) ①的3个解,且
则式①的通解为 ________ .
选项
答案
y=C
1
(y
1
一y
2
)+C
2
(y
2
一y
3
)+y
1
,其中C
1
,C
2
为任意常数
解析
由非齐次线性方程的两个解,可构造出对应的齐次方程的解,再证明这样所得到的解线性无关便可.
y
1
一y
2
与y
2
~y
3
均是式①对应的线性齐次方程
y"+p(x)y’+q(x)y=0 ②
的两个解.今证它们线性无关.事实上,若它们线性相关,则存在两个不全为零的常数k
1
与k
2
使
k
1
(y
1
一y
2
)+k
2
(y
2
一y
3
)=0. ③
设k
1
≠0,又由题设知y
2
一y
3
≠0,于是式③可改写为
矛盾。若k
1
=0,由y
2
—y
1
≠0,故由式③推知k
2
=0矛盾.这些矛盾证得y
1
一y
2
与y
2
—y
3
线性无关.
于是 Y=C
1
(y
1
一y
2
)+C
2
(y
2
一y
3
) ④
为式②的通解,其中C
1
,C
2
为任意常数,从而知
y=C
1
(y
1
一y
2
)+C
2
(y
2
一y
3
)+y
1
⑤为式①的通解.
转载请注明原文地址:https://kaotiyun.com/show/gSU4777K
0
考研数学三
相关试题推荐
2022年2月14日,国家主席习近平同墨西哥合众国总统洛佩斯互致贺电,庆祝两国建交()周年。
国家主席习近平2021年10月13日同德国总理默克尔举行视频会晤。他强调,中国和德国自身发展得好,对世界经济的贡献也更大。这证明,国与国之间完全可以避免(),实现互利共赢,这是中德关系应该牢牢把握的主基调。
2021年9月9日,国家主席习近平出席金砖国家领导人第十三次会晤并发表重要讲话。他宣布,在向“新冠疫苗实施计划”捐赠()基础上,年内中国将再向发展中国家无偿捐赠()疫苗。
对社会主义初级阶段的认识,以下说法正确的有()。①经济发展水平是决定初级阶段的唯一条件②要从整个社会主义事业发展全局来认识③必须全面把握,综合考量④从来都不是单纯从经济发展水平一个因素来看的
党的十八大以来,以习近平同志为核心的党中央坚持以马克思列宁主义、毛泽东思想、邓小平理论、“三个代表”重要思想、科学发展观为指导,坚持解放思想、实事求是、与时俱进、求真务实,坚持辩证唯物主义和历史唯物主义,紧密结合新的时代条件和实践要求,以全新的视野深化对共
用不同的方法解决不同的矛盾是马克思主义的一个重要原则。分析矛盾特殊性的意义就在于,它既是科学地认识事物的基础,又是正确地解决矛盾的关键。只有如实地分析矛盾的特殊性,才能认清事物的本质和发展规律,才能采取正确的方针和办法去解决矛盾。矛盾解决的形式包括
法律权利是指反映一定的社会物质生活条件所制约的行为自由,是法律所允许的权利人为了满足自己的利益而采取的、由其他人的法律义务所保证的法律手段。法律权利的特征是
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
求下列微分方程的通解(1)xyˊ+y-2y3=0;(2)xyˊlnx+y=x(1+lnx);(3)yˊ+ex(1-e-y)=0;(4)yy〞-yˊ2-1=0.
求极限
随机试题
Whenyouarebeinginterviewedforajob,rememberthatit’s【61】formanypeopletobenervous,【62】insuchastress-producingsit
下列哪项不是子宫收缩乏力的诱因
张力性气胸主要的病理生理改变是
根据《劳动法》的规定,女职工生育享受不少于()的产假。
一般而言,会计主体都是法律主体。()
《消费者权益保护法》中的消费是指生活消费。( )
拥有信息并试图进行沟通的人又称之为()。
《让世界充满爱》的曲作者是()。
我国社会主义的教育目的是培养德智体等全面发展的社会主义建设者和接班人.()
Fortyyearsagonoonewasconcernedaboutthehealthoftheocean,inspiteofthefactthatmanyfisherieswerebeingoverhar
最新回复
(
0
)