首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设an=2,an+1=(n=1,2,…).证明: (1)an存在; (2)级数收敛.
设an=2,an+1=(n=1,2,…).证明: (1)an存在; (2)级数收敛.
admin
2017-12-31
39
问题
设a
n
=2,a
n+1
=
(n=1,2,…).证明:
(1)
a
n
存在; (2)级数
收敛.
选项
答案
(1)因为a
n+1
=[*], 所以[*]单调减少,而a
n
≥0,即[*]是单调减少有下界的数列,根据极限存在准则[*]a
n
存在. (2)由(1)得0≤[*]≤a
n
-a
n+1
, 对级数[*](a
n
-a
n+1
),S
n
=(a
1
-a
2
)+(a
2
-a
3
)+…+(a
n
-a
n+1
)=2-a
n+1
, [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/hTX4777K
0
考研数学三
相关试题推荐
设P(A)>0,P(B)>0.证明:A,B互不相容与A,B相互独立不能同时成立.
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证:必存在ξ∈(0,3),使f’(ξ)=0.
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零.证明:α1,α2,…,αs,β中任意s个向量线性无关.
已知函数F(x)的导数为=0,则F(x)=________.
设函数f(y)的反函数f-1(x)及f’[f-1(x)]与f"[f’(x)]都存在,且f-1[f-1(x)]≠0.证明:
函数y=f(x)满足条件f(0)=1,f’(0)=0,当x≠0时,f’(x)>0,则它的图形是()
λ为何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
设A为m×n实矩阵,E为n阶单位矩阵。已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵。
设λ1,λn分别为n阶实对称矩阵的最小、最大特征值,X1,Xn分别为对应于λ1,λn的特征向量,记证明:二次型,(x)=XTAX在XTX=1条件下的最大(小)值等于实对称矩阵A的最大(小)特征值。
设n元线性方程组Ax=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求x1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解。
随机试题
下列哪种类型为不累及肺泡的肺气肿()
若蛔虫病患儿并发了不完全肠梗阻,其治疗措施不妥的是
肺癌伴有类癌综合征时不可能出现的症状是
政府公共投资类项目由行业工程咨询机构投标来承揽的咨询服务是()。
监理工程师在设备安装阶段应审核的工作有()。
下列选项中,属于附加刑的是()。
医院和疗养院的病房楼内相邻护理单元之间采用耐火极限不低于()h的防火隔墙分隔,隔墙上的门为乙级防火门,设置在走道上的防火门为常开防火门。
A公司从B汽车运输公司租入5辆载重汽车,双方签订的合同规定,5辆载重汽车的总价值为240万元,租期10个月,月租金为1.28万元。则A公司应缴印花税额()。
A、 B、 C、 D、 AB项中的E开口应朝向B;C项中的正面F应顺时针旋转180度;D项中的B所在面应为F,且F开口向下。因此本题选A。
通过对海豚间通信联系的深入研究,科学家发现,齐普夫定律和信息论中的熵值概念可以很好地为分析外星信号服务。在接收到地外任何可疑信号后,应该首先用齐普夫定律分析是否存在一定斜率直线特征,如果有某种特征,则证明其并非毫无意义的噪声。然后进行熵值分析,这样可以不必
最新回复
(
0
)