首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0, 求f(x).
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0, 求f(x).
admin
2018-01-23
58
问题
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫
0
x
f’(t)dt+2x∫
0
1
f(tx)dt+e
-x
=0,
求f(x).
选项
答案
因为x∫
0
1
f(tr)dt=∫
0
x
f(u)du,所以f’(x)+3∫
0
x
f’(t)dt+2x∫
0
1
f(tx)dt+e
-x
=0可化为 f’(x)+3∫
0
x
f’(t)dt=2∫
0
x
f(t)dt+e
-x
=0, 两边对x求导得f’’(x)+3f’(x)+2f(x)=e
-x
, 由λ
2
+3λ+2=0得λ
1
=-1,λ
2
=-2, 则方程f’’(x)+3f’(x)+2f(x)=0的通解为C
1
e
-x
+C
2
e
-2x
. 令f’’(x)+3f’(x)+2f(x)=e
-x
的一个特解为y
0
=axe
-x
,代入得a=1, 则原方程的通解为f(x)=C
1
e
-x
+C
2
e
-2x
+xe
-x
. 由f(0)=1,f’(0)=-1得C
1
=0,C
2
=1,故原方程的解为f(x)=e
-2x
+xe
-x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/hfX4777K
0
考研数学三
相关试题推荐
已知函数y=e2x+(x+1)ex是二阶常系数线性非齐次方程的解.求方程通解及方程.
曲线y=xex与直线y=ex所暖成图形的面积是__________.
若f’(x)=sinx,则f(x)的原函数之一是
设函数f(x)在区间[0.1]上连续,在(0,1)内可导,且,试证(1)存在,使f(η)=η.(2)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)一λ[f(ξ)一ξ]=1
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f’(x)≠0.试证存在ξ,η∈(a,b),使得
一商家销售某种商品的价格满足关系P=7—0.2X(万元/吨),x为销售量(单位:吨),商品的成本函数是C=3x+1(万元)t为何值时,政府税收总额最大.
设某产品的成本函数为C=aq2+bq+c,需求函数为其中C为成本,q为需求量(即产量),p为单价,a,b,c,d,e都是正的常数,且d>b.求:(1)利润最大时的产量及最大利润;(2)需求对价格的弹性;(3)需求对价格弹性的绝对值为1时的产量.
设周期函数f(x)在(一∞,+∞)内可导,周期为4,又,则曲线y=f(x)在点(5,f(5))处的切线斜率为
随机试题
委托监理合同的有效期是指()。
事故处理需要进行设计变更的,需由()提出设计变更方案。
目前,我国和世界上绝大多数国家和地区采用的外汇标价方法是()。
甲公司以客户需求为导向,涵盖从田间到餐桌,即从农产品原料到终端消费品,包括种植、收储物流、贸易、加工、养殖屠宰、食品制造与营销等多个环节,通过对全产业链的系统管理和关键环节的有效掌控以及各产业链之间的有机协同,形成整体核心竞争力,奉献安全、营养、健康的食品
阅读教学之间的对话过程产生在()。
各位学者都上了车,各自坐好后,列车员拿来了图书供大家阅览。列车员问学者AA想看什么类的书。列车员问:“想看什么类的书?”学者AA说:“我不像讨厌文学那样讨厌地理,我不像讨厌军事那样讨厌科教,我不像喜欢艺术那样喜欢地理,我对科教不如对文学那样喜欢。”学者AA
在古典传统里,和谐的反面是千篇一律:“君子和而不同,小人同而不和”,所以和谐的一个条件是对于多样性的认同。中国人甚至在孔子之前就有了对于和谐的经典认识与体现。中围古代的音乐艺术很发达,特别是一些中国乐器,像钟、磬、瑟等各种完全不同的乐器按照一定的韵律奏出动
哲学唯心主义“无疑是一朵无实花,然而却是生长在活生生的、结果实的、真实的、强大的、全能的、客观的、绝对的人类认识这棵活生生的树上的一朵无实花”。这说明()
设有员工实体Employee(employeeID,name,sex,age,tel,departID),其中employeeID为员工号,name为员工姓名,sex为员工性别,age为员工年龄,tel为员工电话(要求记录该员工的手机号码和办公室电话),d
在多道程序系统中,每组进程中的每一个进程均无限期地等待被该组进程中的另一个进程所占有且永远不会释放的资源,这种现象称为
最新回复
(
0
)