首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0, 求f(x).
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0, 求f(x).
admin
2018-01-23
36
问题
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫
0
x
f’(t)dt+2x∫
0
1
f(tx)dt+e
-x
=0,
求f(x).
选项
答案
因为x∫
0
1
f(tr)dt=∫
0
x
f(u)du,所以f’(x)+3∫
0
x
f’(t)dt+2x∫
0
1
f(tx)dt+e
-x
=0可化为 f’(x)+3∫
0
x
f’(t)dt=2∫
0
x
f(t)dt+e
-x
=0, 两边对x求导得f’’(x)+3f’(x)+2f(x)=e
-x
, 由λ
2
+3λ+2=0得λ
1
=-1,λ
2
=-2, 则方程f’’(x)+3f’(x)+2f(x)=0的通解为C
1
e
-x
+C
2
e
-2x
. 令f’’(x)+3f’(x)+2f(x)=e
-x
的一个特解为y
0
=axe
-x
,代入得a=1, 则原方程的通解为f(x)=C
1
e
-x
+C
2
e
-2x
+xe
-x
. 由f(0)=1,f’(0)=-1得C
1
=0,C
2
=1,故原方程的解为f(x)=e
-2x
+xe
-x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/hfX4777K
0
考研数学三
相关试题推荐
已知y1=xex+e2x,y2=xex+e-x,y3=xex+e2x一e-x是某二阶线性非齐次微分方程的三个解,求此微分方程.
已知函数y=e2x+(x+1)ex是二阶常系数线性非齐次方程的解.求方程通解及方程.
若连续函数满足关系式则f(x)等于
若f’(x)=sinx,则f(x)的原函数之一是
设其中g(x)有二阶连续导数,且g(0)=1,g’(0)=一1求f’(x);
设商品的需求函数Q=100一5p,其中Q、P分别表示需求量和价格,如果商品需求弹性的绝对值大于1,则商品价格的取值范围是_______.
设f(x)有连续的导数,f(0)=0且f’(0)=b,若函数在x=0处连续,则常数A=__________.
设周期函数f(x)在(一∞,+∞)内可导,周期为4,又,则曲线y=f(x)在点(5,f(5))处的切线斜率为
随机试题
关于病理缩复环不正确的是
A.异体真皮+自体薄皮B.大张中厚皮,多用于功能部位C.应用轧皮机在中厚皮片切出网孔D.皮片大小通常为0.5cm×0.5cm,皮片间距1.0cmE.创面为肉芽组织复合皮移植的特点是
为实现项目的进度目标,在理顺组织的前提下,( )显得十分重要。
“剪切”按钮的快捷键是Ctrl+X。 ( )。
下列情形中,可以认为非居民企业在中国设有机构、场所的有()。
成长小组组员之间已相当熟悉,聚会时均能积极表达自己的意见,讨论非常热烈,互不相让,还出现个别组员为获得更多的支持,出言贬低他人的行为。社会工作者小李细心倾听组员的意见,不时点头,并指出小组面临的冲突,让他们一起面对,寻求处理的办法。小李运用的小组技巧有(
发现第一颗“北京人”头盖骨的科学家是()。
有人认为鸡蛋黄的黄色跟鸡所吃的绿色植物性饲料有关,为了验证这个结论,下面哪种实验方法最可靠?()
考查下列文法:G(VT,VN,E,P)其中:VT={+,*,(,),i)VN={E,T,F}E是开始符号P:E→E+T|TT→T*F|FF→(E)|IF*F+T是该文法的一个句型,其中,(28)是句柄,(29)是素短语(30)是该句型的直
搜索考生文件夹下的YOU.TXT文件,然后将其复制到考生文件夹下的GAH文件夹中。
最新回复
(
0
)