首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0, 求f(x).
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0, 求f(x).
admin
2018-01-23
26
问题
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫
0
x
f’(t)dt+2x∫
0
1
f(tx)dt+e
-x
=0,
求f(x).
选项
答案
因为x∫
0
1
f(tr)dt=∫
0
x
f(u)du,所以f’(x)+3∫
0
x
f’(t)dt+2x∫
0
1
f(tx)dt+e
-x
=0可化为 f’(x)+3∫
0
x
f’(t)dt=2∫
0
x
f(t)dt+e
-x
=0, 两边对x求导得f’’(x)+3f’(x)+2f(x)=e
-x
, 由λ
2
+3λ+2=0得λ
1
=-1,λ
2
=-2, 则方程f’’(x)+3f’(x)+2f(x)=0的通解为C
1
e
-x
+C
2
e
-2x
. 令f’’(x)+3f’(x)+2f(x)=e
-x
的一个特解为y
0
=axe
-x
,代入得a=1, 则原方程的通解为f(x)=C
1
e
-x
+C
2
e
-2x
+xe
-x
. 由f(0)=1,f’(0)=-1得C
1
=0,C
2
=1,故原方程的解为f(x)=e
-2x
+xe
-x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/hfX4777K
0
考研数学三
相关试题推荐
已知y1=xex+e2x,y2=xex+e-x,y3=xex+e2x一e-x是某二阶线性非齐次微分方程的三个解,求此微分方程.
已知函数y=e2x+(x+1)ex是二阶常系数线性非齐次方程的解.求方程通解及方程.
设函数f(x)连续,则F’(x)=
若f’(x)=sinx,则f(x)的原函数之一是
设函数f(x)在区间[0.1]上连续,在(0,1)内可导,且,试证(1)存在,使f(η)=η.(2)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)一λ[f(ξ)一ξ]=1
一商家销售某种商品的价格满足关系P=7—0.2X(万元/吨),x为销售量(单位:吨),商品的成本函数是C=3x+1(万元)t为何值时,政府税收总额最大.
设其中g(x)有二阶连续导数,且g(0)=1,g’(0)=一1讨论f’(x)在(一∞,+∞)上的连续性.
设商品的需求函数Q=100一5p,其中Q、P分别表示需求量和价格,如果商品需求弹性的绝对值大于1,则商品价格的取值范围是_______.
设f(x)有连续的导数,f(0)=0且f’(0)=b,若函数在x=0处连续,则常数A=__________.
随机试题
为避免肓目追求信息质量而造成成本过大,在选择会计政策时,企业关键要处理好
太阳中风证的主要脉症是
原发性深静脉瓣膜功能不全的最可靠检查方法是()
为了保证抗原抗体在最适比例条件下进行反应,达到最大沉淀反应的效果,采用什么方法选择抗原和抗体的最佳工作浓度
低钾导致的碱中毒常出现在()
“确有悔改表现”是指同时具备以下几个方面的情形:
下列成语中,源于荆轲刺秦王故事的是()。
货币局制度
下列哪一个方法是自动调整窗口的大小?
Amultinationalcorporationisacorporateenterprise,whichthoughheadquarteredinonecountry,conductsitsoperationsthroug
最新回复
(
0
)