首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0, 求f(x).
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0, 求f(x).
admin
2018-01-23
64
问题
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫
0
x
f’(t)dt+2x∫
0
1
f(tx)dt+e
-x
=0,
求f(x).
选项
答案
因为x∫
0
1
f(tr)dt=∫
0
x
f(u)du,所以f’(x)+3∫
0
x
f’(t)dt+2x∫
0
1
f(tx)dt+e
-x
=0可化为 f’(x)+3∫
0
x
f’(t)dt=2∫
0
x
f(t)dt+e
-x
=0, 两边对x求导得f’’(x)+3f’(x)+2f(x)=e
-x
, 由λ
2
+3λ+2=0得λ
1
=-1,λ
2
=-2, 则方程f’’(x)+3f’(x)+2f(x)=0的通解为C
1
e
-x
+C
2
e
-2x
. 令f’’(x)+3f’(x)+2f(x)=e
-x
的一个特解为y
0
=axe
-x
,代入得a=1, 则原方程的通解为f(x)=C
1
e
-x
+C
2
e
-2x
+xe
-x
. 由f(0)=1,f’(0)=-1得C
1
=0,C
2
=1,故原方程的解为f(x)=e
-2x
+xe
-x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/hfX4777K
0
考研数学三
相关试题推荐
已知y1=xex+e2x,y2=xex+e-x,y3=xex+e2x一e-x是某二阶线性非齐次微分方程的三个解,求此微分方程.
已知函数y=e2x+(x+1)ex是二阶常系数线性非齐次方程的解.求方程通解及方程.
曲线y=xex与直线y=ex所暖成图形的面积是__________.
设函数f(x)连续,则F’(x)=
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f’(x)≠0.试证存在ξ,η∈(a,b),使得
设其中g(x)有二阶连续导数,且g(0)=1,g’(0)=一1讨论f’(x)在(一∞,+∞)上的连续性.
设其中g(x)有二阶连续导数,且g(0)=1,g’(0)=一1求f’(x);
随机试题
脾胃湿热的舌象是胃的气阴两伤的舌象是
A.脾胃阳虚B.胃火上逆C.胃阴不足D.胃中寒冷呃声急促而不连续,口干舌燥,舌质红而干,或有裂纹,脉细数。其证属
A、多西环素B、氟康唑C、喹碘方D、阿米卡星E、替硝唑可替代四环素发挥广谱抗菌作用的药物是
女,38岁。于高处取物时不慎摔下,呈骑跨式,伤及外阴部位,疼痛难忍,出现外阴血肿最易发生的部位是
宏观调控的对象是()。
根据我国现行《宪法》规定,下列行为中构成违宪的是:()
某省红十字基金会拟成立一项救助贫闲地区失学儿童的专项基金,计划每年救助欠学儿童1万人,每年为每人资助金额为1000元,假设目前的存款利率为4%,则该专项基金设立时应该拨人资金()万元。
据下面资料,回答下列问题。【资料】上课了,章老师走进了八年级(1)班的教室,手里没拿书,只拿了一只已经折好的纸飞机和一张纸。同学们疑惑地看着章老师,有同学问:“章老师,这节课我们不上课吗?”章老师坦然地说:“不上啦,我们玩纸飞机好吗?”这些纸飞
“治国有常、而利民为本”,这些年,“把人民群众的小事当作自己的大事”成为从上到下、真真切切的行动锁定重点人群、重点领域,织牢织密兜底之网:举全社会之力脱贫攻坚,靶向精准,力度增大;户籍制度改革、公立医院改革、城乡养老并轨、“全面二孩”等一系列标志性的改革措
下列作家与其作品中所展现的地域对应错误的是:
最新回复
(
0
)