首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是任一n阶可逆矩阵(n≥3),k为常数,且k≠0,±1,则(kA-1)*等于
设A是任一n阶可逆矩阵(n≥3),k为常数,且k≠0,±1,则(kA-1)*等于
admin
2017-07-11
59
问题
设A是任一n阶可逆矩阵(n≥3),k为常数,且k≠0,±1,则(kA
-1
)
*
等于
选项
A、
B、
C、
D、
答案
C
解析
因矩阵A可逆,故由A
*
=|A|A
-1
可得
转载请注明原文地址:https://kaotiyun.com/show/i8H4777K
0
考研数学三
相关试题推荐
已知A是3阶矩阵,α(i=1,2,3)是3维非零列向量,若Aαi=iαi(i=1,2,3),令α=α1+α2+α3证明:α,Aα,A2α线性无关;
没f(x)是单调减函数,满足f(0)=1.若F(x)是f(x)的一个原函数,G(x)是的一个原函数,且F(x)G(x)≡一1,则f(x)=____________.
设随机变量(X,Y)服从二维正态分布,其密度函数为f(x,y)=ae-2x2-y2-8x+4y-14,则常数a=__________.
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3一2α1+3α3.求矩阵A*一6E的秩.
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3一2α1+3α3.求矩阵A的特征向量;
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.把向量β分别用α1,α2,α3,α4和它的极大线性无关组线性表出.
已知A是3阶矩阵α1,α2,α3是3维线性无关列向量,且Aα1=3α1+3α2—2α3,Aα2=一α2,Aα3=8α1+6α2—5α3.写出与A相似的矩阵B;
设随机变量X和1,相互独立且都服从正态分布N(0,1),而X1,X2,…,X9和Y1,Y2,…,Y9分别是来自总体X和Y的简单随机样本,求统计量所服从的分布,并指明参数.
某可控硅控制线路中,流过负载R的电流i(t)为其中ω=2π/T,t。称为触发时间,如果T=0.02s,(1)当触发时间t。=0.0025s时,求[0,T/2]内电流的平均值;(2)当触发时间为t。时,求[0,T/2]内电流的平均值.
设则A-1=____________.
随机试题
背景:某写字楼工程,剪力墙结构。结构工程已经施工完毕,并且抹灰工序已经基本完成。此时设计对外墙装修进行了修改,在剪力墙的外侧增设点式玻璃幕墙,需在剪力墙上安装后埋件,安装完毕后土建再对其进行处理。后续施工过程中发生了以下事件:事件一:在
阅读下面一段文字,回答问题:《书》曰:“满招损,谦得益。”忧劳可以兴国,逸豫可以亡身,自然之理也。故方其盛也,举天下之豪杰,莫能与之争;及其衰也,数十伶人困之,而身死国灭,为天下笑。夫祸患常积于忽微,而智勇多困于所溺,岂独伶人也哉!
混合爆炸气体的爆炸极限值不是一个物理常数,它随条件的变化而变化。通常对其产生影响的因素包括()。
广泛应用于设备安装的基础是()。
下列各项中,需要计提坏账准备的有()。
按情感的分类,成功解决一道难题后产生的自豪、愉快感属于()。
北京市和上海市上一年度1月至11月的累计客运量之比为
阅读以下说明,回答问题1~问题4,将答案填入对应的答案栏内。【说明】某公司使用一台装有WindowsServer2003的PC服务器作为Web服务器(文档的主目录为D:\www/root)。为了使Web管理员(其用户名为webadm
Thecaronedrivesmayshowhis/her_____orsocialposition.
Whathesaidjustnowhadlittletodowiththequestion_________discussion.
最新回复
(
0
)