首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,a为常数,n为整数,则f(n)=________.
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,a为常数,n为整数,则f(n)=________.
admin
2015-07-22
83
问题
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,a为常数,n为整数,则f(n)=________.
选项
答案
na
解析
令x=-1,则f(1)=f(一1)+f(2),因f(x)是奇函数,得到f(2)=f(1)一f(一1)=2f(1)=2a.再令x=1,则f(3)=f(1)+f(2)=3f(1)=3a,现用数学归纳法证明f(n)=na.当n=1,2,3时,已知或者已证,假设n≤k时,有f(k)=ka.当n=k+1时,f(k+1)= f(k一1)+f(2)=(k一1)a+2a=(k+1)a,故对一切正整数n,有f(n)=na,令x=0,则f(2)= f(0)+f(2),即f(0)=0=0.a,又f(x)是奇函数,故对一切负整数n有f(x)=-f(一n)=-(一na)=na.所以对一切整数n,均有f(n)=na.
转载请注明原文地址:https://kaotiyun.com/show/i8U4777K
0
考研数学三
相关试题推荐
“明者因时而变,知者随事而制。”中国经济已经进入新常态,不能用“旧常态”的思想继续引导新常态的实践和发展,也不能用“旧常态”的观念来判断、甚至制约新常态的改革发展与创新实践。更好引领新常态的根本之策是
列宁深刻分析了19世纪末20世纪初世界历史条件的变化,提出了社会主义革命可能在一国或数国首先取得胜利的论断。列宁提出这一论断的依据是
1956年9月15日至27日,中国共产党第八次全国代表大会在北京举行。在大会发言中,陈云提出“三个主体、三个补充”的思想,其内容是
“人的思维是否具有真理性,这并不是一个理论的问题,而是一个实践的问题。人应该在实践中证明自己思维的真理性,即自己思维的现实性和力量,亦即自己思维的此岸性。”这一论断说明了()。
设函数f(x)=(x2-3x+2)sinx,则方程fˊ(x)=0在(0,π)内根的个数为()。
若幂级数在x=-1处收敛,则此级数在x=2处().
若三阶常系数齐次线性微分方程有特解y1=e-x,y2=2xe-x及y3=3ex,则该微分方程是().
设△ABC为等腰三角形,∠B=∠C,∠B的平分线与对边AC交于点P,则由平面几何知道,AP/PC=BA/BC,现假定底边BC保持不动,而让等腰三角形的高趋于零,此时点A就趋于底边BC的中点,试求这一变化过程中点P的极限位置.
没数列{xn}满足o<x<1<π,xn+1=sinxn(n=l,2,…).证叫sinxn存在,并求该极限;
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+a(x).其中a(x)是当x—0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程.
随机试题
Mr.Smithgavehiswifetenpoundforherbirthday—tenprettypoundnotes.Sothedayafterherbirthday,MrsSmithwentshoppi
关于女性骨盆哪项是错误的
Smith骨折远端移位畸形是
尼可刹米的鉴别反应为()
当事人既约定违约金又约定定金的,一方违约时,对方()。
微分方程y’’一2y’+2y=0的通解为()。
背景某机电工程公司以EPC方式中标了一化工厂建设工程项目。由于其地处偏僻,规模大,需要较大的临时用电量,并编制了临时用电施工组织设计;考虑工程设备不仅大件设备多,而且需要较多的大型吊装设备,多种施工专业队伍和人员。为提高机械设备的利用率和工作效率
下列犯罪中,不可能存在犯罪未完成形念的有()。(2010年真题)
日本では、漫画映画の場合、脚本家を立ててそれに優先【R1】________企画を進めるのは、意味がなくなってしまうことが多いんです。メインスタッフは、中心人物である監督が何を作りたいのかが決まるまで待っていなくてはいけない。一方、海外では日本と事情が逆で
eBay[A]eBayisaglobalphenomenon—theworld’slargestgaragesale,onlineshoppingcenter,cardealerandauctionsitewit
最新回复
(
0
)