首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组 有三个线性无关的解。 证明方程组系数矩阵A的秩r(A)=2;
已知非齐次线性方程组 有三个线性无关的解。 证明方程组系数矩阵A的秩r(A)=2;
admin
2018-04-12
58
问题
已知非齐次线性方程组
有三个线性无关的解。
证明方程组系数矩阵A的秩r(A)=2;
选项
答案
设α
1
,α
2
,α
3
是方程组Ax=β的三个线性无关的解,其中 [*] 则有A(α
1
一α
2
)=0,A(α
1
一α
3
)=0。 那么α
1
一α
2
,α
1
一α
3
是对应齐次线性方程组Ax=0的解,且线性无关(否则,易推出α
1
,α
2
,α
3
线性相关,矛盾)。 所以n一r(A)≥2,即4一r(A)≥2[*]r(A)≤2。又矩阵A中有一个2阶子式[*]=一1≠0,所以r(A)≥2。因此,r(A)=2。
解析
非齐次线性方程组有三个线性无关的解,可以得到齐次线性方程组有两个线性无关的解,由于基础解系中有4一r(A)个向量,由此可以得到r(A)≤2;接下来再证明r(A)≥2即可。
转载请注明原文地址:https://kaotiyun.com/show/iDk4777K
0
考研数学二
相关试题推荐
微生物培养的增殖速率和它们现有的量及现有的营养物质的乘积成正比(比例系数为k),营养物质减少的速率和微生物的现有量成正比(比例系数为k1),实验开始时,容器内有x。g微生物和y。g营养物质,试求微生物的量及营养物质的量随时间的变化规律,并问何时微生物停止增
当x→0时,(1-ax2)1/4-1与xsinx是等价无穷小,则z=_________.
设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>O,令μn=f(n)(n=1,2,…),则下列结论正确的是
设z=f(x+y,x-y,xy),其中f具有二阶连续偏导数,求
设u=e-xsinx/y,则э2u/эxэy在点(2,1/π)处的值________。
设已知线性方程组Ax=6存在2个不同的解。求λ.a;
设二次型f(x1,x2,x3)=xTAX=ax12+2x22-2x32+2bx1x3(6>o),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.求a,b的值.
求证:元素均为1或-1的n(n≥2)阶行列式D的值为偶数.
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2的秩为_________.
(2008年试题,22)设n元线性方程组Ax=b,其中(I)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
随机试题
精加工时,切削量小,产生的热量少,应采用以冷却为主的切削液。
邓小平指出:“解决民族问题,中国采取的不是民族共和联邦的制度,而是民族区域自治的制度。我们认为这个制度比较好,适合中国的情况。”我们实行民族区域自治的历史依据是()
A、 B、 C、 D、 A
男性,40岁。20年前患过肺结核外,平素健康,近3个月来有刺激性咳嗽,痰中偶有血丝,有时发热。胸部X线示:右肺上叶前段有2cm×2.5cm的块状阴影,边缘不整呈分叶状,痰查脱落细胞3次均阴性,诊断首先考虑
神阙穴旁开2寸处的腧穴是()
建设项目评价中的总投资包括:
企业应当以()为基础,根据实际发生的交易和事项,按照《企业会计准则——基本准则》和其他各项会计准则的规定进行确认和计量,在此基础上编制财务报表。
金属历来都是通过采矿、冶金制取的,可是80年代初期,科学家发现在聚乙炔中加入强氧化剂或还原剂后,它的导电性能大大提高。因为这种塑料具有金属的一般特性,所以人们称它为“人造金属”。近年来,它的发展极为神速,人们又先后研制成功了聚苯乙炔、聚苯硫醚和聚双炔类等。
一件公文同其他公文相区别的最强的专指性标识是()。
在神经元的各组成部分中,用来接收其他神经元信息的是()。(华南师范大学2015研)
最新回复
(
0
)