首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组 有三个线性无关的解。 证明方程组系数矩阵A的秩r(A)=2;
已知非齐次线性方程组 有三个线性无关的解。 证明方程组系数矩阵A的秩r(A)=2;
admin
2018-04-12
115
问题
已知非齐次线性方程组
有三个线性无关的解。
证明方程组系数矩阵A的秩r(A)=2;
选项
答案
设α
1
,α
2
,α
3
是方程组Ax=β的三个线性无关的解,其中 [*] 则有A(α
1
一α
2
)=0,A(α
1
一α
3
)=0。 那么α
1
一α
2
,α
1
一α
3
是对应齐次线性方程组Ax=0的解,且线性无关(否则,易推出α
1
,α
2
,α
3
线性相关,矛盾)。 所以n一r(A)≥2,即4一r(A)≥2[*]r(A)≤2。又矩阵A中有一个2阶子式[*]=一1≠0,所以r(A)≥2。因此,r(A)=2。
解析
非齐次线性方程组有三个线性无关的解,可以得到齐次线性方程组有两个线性无关的解,由于基础解系中有4一r(A)个向量,由此可以得到r(A)≤2;接下来再证明r(A)≥2即可。
转载请注明原文地址:https://kaotiyun.com/show/iDk4777K
0
考研数学二
相关试题推荐
微生物培养的增殖速率和它们现有的量及现有的营养物质的乘积成正比(比例系数为k),营养物质减少的速率和微生物的现有量成正比(比例系数为k1),实验开始时,容器内有x。g微生物和y。g营养物质,试求微生物的量及营养物质的量随时间的变化规律,并问何时微生物停止增
独立投掷一枚均匀骰子两次,记B,C为两次中各出现的点数,求一元二次方程x2+Bx+C=0有实根的概率p和有重根的概率q.
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.写出f(x)在[-2,0)上的表达式;
求微分方程ydx+(x-3y2)dx=0满足条件y|x=1=1的解y。
函数y=C1ex+C2e-2x+xex满足的一个微分方程是
设u=e-xsinx/y,则э2u/эxэy在点(2,1/π)处的值________。
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设n阶方阵A、B、C满足关系式ABC=E,其中E是n阶单位阵,则必有
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则
(I)利用行列式性质,有[*]
随机试题
血管紧张素转化酶抑制药(ACEI)的基本药理作用无下列哪一条作用:
全国人民代表大会常务委员会对法律所做的解释属于()。
甲、乙两人从相距1100米的两地相向而行,甲每分钟走65米,乙每分钟走75米,甲出发4分钟后,乙才开始出发,乙带了一只狗和乙同时出发,狗以每分钟150米的速度向甲奔去,遇到甲后立即回头向乙奔去,遇到乙后又回头向甲奔去,直到甲、乙两人相遇时狗才停止,这只狗共
Manypeoplegotoschoolforaneducation.【C1】______learnlanguages,history,geography,physics,chemistryandmaths.Othersgo
使用缓冲技术的主要目的是(22)。
TheUnitedStates【C1】______alargepartoftheNorthAmericancontinent.ItsneighborsareCanada【C2】______thenorth,andMexico
Itwasnotuntilitwasgettingdark______thechildrememberedtogobackhome.
Coalisexpectedtocontinuetoaccountforalmost27percentoftheworld’senergyneeds.Withgrowinginternationalawareness
Lastyear,hundredsofcollegestudentsappliedfortheNewTimesCupEnglishSpeech
Thecar______bythesideoftheroadandthedrivertriedtorepairit.
最新回复
(
0
)