首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且则f+’(0)存在,且f+’(0)=A.2—69(10,4分)设函数f(x),g(x)具有二阶导数,且g’’(x)<0.若g(x0)=a是g(x)的极值,则f(g(x))在x0取极大值的一
证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且则f+’(0)存在,且f+’(0)=A.2—69(10,4分)设函数f(x),g(x)具有二阶导数,且g’’(x)<0.若g(x0)=a是g(x)的极值,则f(g(x))在x0取极大值的一
admin
2016-03-26
72
问题
证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
则f
+
’(0)存在,且f
+
’(0)=A.2—69(10,4分)设函数f(x),g(x)具有二阶导数,且g’’(x)<0.若g(x
0
)=a是g(x)的极值,则f(g(x))在x
0
取极大值的一个充分条件是
选项
A、f’(a)<0
B、f’(a)>0
C、f’(a)<0
D、f’’(a)>0
答案
B
解析
令φ(x)=f[g(x)],则
φ’(x)=f’[g(x)]g’(x)
φ’(x
0
)=f’[g(x
0
)]g’(x
0
)=0
φ’’(x)=f’’[g(z)]g
’2
(x)+f’[g(x)]g’’(x)
φ’’(x
0
)=f[g(x)]g’’(x
0
)=f’(a)g’’(x
0
)
若f’(a)>0,则φ’’(x
0
)<0,故φ(x)在x
0
处取极大值.
转载请注明原文地址:https://kaotiyun.com/show/iET4777K
0
考研数学三
相关试题推荐
风景秀丽的黄山以奇松、怪石、云海、温泉“四绝”著称,明代旅行家徐霞客两游黄山,留下了“五岳归来不看山,黄山归来不看岳”的感叹。运用矛盾的普遍性与特殊性的辩证关系原理判断,下列说法正确的是()
材料1 北京大学援鄂医疗队全体“90后”党员: 来信收悉。在新冠肺炎疫情防控斗争中,你们青年人同在一线英勇奋战的广大疫情防控人员一道,不畏艰险、冲锋在前、舍生忘死,彰显了青春的蓬勃力量,交出了合格答卷。广大青年用行动证明,新时代的中国青年是好样的,
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论αm能否由α1,α2,…,αm-1线性表示?
设β,α1,α2线性相关,β,α2,α3线性无关,则().
设A,B是同阶正定矩阵,则下列命题错误的是().
证明下列关系式:A∪B=A∪(B-A)=(A-B)∪(B-A)∪(A∩B).
由概率的公理化定义证明:(1)P()=1-P(A);(2)P(A-B)=P(A)-P(AB).特别地,若A⊃B,则P(A-B)=P(A)-P(B).且P(A)≥P(B);(3)0≤P(A)≤1;(4)P(A∪B)
写出下列曲线绕指定轴旋转所生成的旋转曲面的方程:(1)xOy平面上的抛物线z2=5x绕x轴旋转;(2)xOy平面上的双曲线4x2-9y2=36绕y轴旋转;(3)xOy平面上的圆(x-2)2+y2=1绕y轴旋转;(4)yOz平面上的直线2y-3z+1
设A为3阶矩阵,|A|=3,A*为A的伴随矩阵.若交换A的第1行与第2行得矩阵B,则|BA*|=__________.
随机试题
简述公民民事行为能力的概念及种类。
甘油具有防腐作用的质量分数是10%。()
A.样本率与总体率比较的目的B.配对计数资料的比较目的C.两个样本率比较的目的D.多个样本率作比较的目的E.将两个或多个样本构成比作比较的目的推断样本率所代表的总体率与总体率是否相等
根据《企业会计准则第21号——租赁》的规定,融资租赁是指出租人实质上转移了与()有关的全部风险和报酬的租赁。
Thefamilymembers______inBritainwerenotavailableSundaynightforthereunion.
2018年10月26日,第十三届全国人大常委会第六次会议表决通过了关于修改刑事诉讼法的决定。关于此次修改的内容,下列说法错误的是()。
公务人员回避,是指为了防止公务人员因个人利益和亲属关系等因素对公务活动产生不良影响,对其本人做出一定的限制,使其避开有关亲属关系和公务的制度。根据以上定义,下列哪项不属于公务人员回避?()
美感开始于_______。
打开考生文件夹下的演示文稿yswg.pptx,按照下列要求完成对此文稿的修饰并保存,内容请按照题干所示的全角或半角形式输入。使用“奥斯汀”主题修饰全文,全部幻灯片切换方案为“推进”,效果选项为“自顶部”;放映方式为“观众自行浏览”。
BroughesterUniversityDramaGuildandTheScholarpresentAnita
最新回复
(
0
)