首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且则f+’(0)存在,且f+’(0)=A.2—69(10,4分)设函数f(x),g(x)具有二阶导数,且g’’(x)<0.若g(x0)=a是g(x)的极值,则f(g(x))在x0取极大值的一
证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且则f+’(0)存在,且f+’(0)=A.2—69(10,4分)设函数f(x),g(x)具有二阶导数,且g’’(x)<0.若g(x0)=a是g(x)的极值,则f(g(x))在x0取极大值的一
admin
2016-03-26
71
问题
证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
则f
+
’(0)存在,且f
+
’(0)=A.2—69(10,4分)设函数f(x),g(x)具有二阶导数,且g’’(x)<0.若g(x
0
)=a是g(x)的极值,则f(g(x))在x
0
取极大值的一个充分条件是
选项
A、f’(a)<0
B、f’(a)>0
C、f’(a)<0
D、f’’(a)>0
答案
B
解析
令φ(x)=f[g(x)],则
φ’(x)=f’[g(x)]g’(x)
φ’(x
0
)=f’[g(x
0
)]g’(x
0
)=0
φ’’(x)=f’’[g(z)]g
’2
(x)+f’[g(x)]g’’(x)
φ’’(x
0
)=f[g(x)]g’’(x
0
)=f’(a)g’’(x
0
)
若f’(a)>0,则φ’’(x
0
)<0,故φ(x)在x
0
处取极大值.
转载请注明原文地址:https://kaotiyun.com/show/iET4777K
0
考研数学三
相关试题推荐
1925年毛泽东在《中国社会各阶级的分析》中指出,中国过去一切革命斗争成效甚少,其基本原因就是
在1840年到1949年这一百多年中,中国虽然曾极度衰败、受尽列强的欺凌蔑视、濒临灭亡,但最终没有沦为帝国主义的殖民地。正如一位法国人所说:“吾故谓瓜分之说,不啻梦呓也。”帝国主义列强瓜分中国的图谋“不啻梦呓也”的根本原因是
1957年2月,毛泽东在扩大的最高国务会议上发表《如何处理人民内部的矛盾》的讲话,阐明了社会主义社会的重大理论问题。毛泽东强调,社会主义制度下国家政治生活的主题是
设向量组α1,α3,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
设α1,α2,…,αr(r≤n)是互不相同的数,αi=(1,αi,αi2,…,αin-1)(i=1,2,…,r),问α1,α2,…,αr是否线性相关?
A、 B、 C、 D、 D根据事件的并的定义,凡是出现“至少有一个”,均可由“事件的并”来表示,而事件“不发生”可由对立事件来表示,于是“A,B,C至少有一个不发生”等价于“A,B,C中至少有一个发生”,故答
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
设f(x)是处处可导的奇函数,证明:对任-b>0,总存在c∈(-b,b)使得fˊ(c)=f(b)/b.
设,试用定义证明f(x,y)在点(0,0)处可微分.
设f(x)=xsinx+cosx,下列命题中正确的是()
随机试题
总量指标动态数列是将反映某种社会经济现象的一系列总量指标按时间先后顺序排列形成的数列,可分为两类:(1)时期数列:每个指标都表示社会经济现象在一定时期内发展过程的总量,各指标值可以相加,指标数值的大小与时期长短有直接关系;(2)时点数列:每个指标都表示社会
临床上“象皮腿”的形成主要是由于
人际沟通
A.六君子汤B.补中益气汤C.玉屏风散D.金匮肾气丸E.生脉散哮病缓解期脾虚为主最宜选用
温度对酶活力的影响错误的是
1.背景:某公司承建城市跨线桥,主桥长520m,桥宽22.15m,跨越现况河渠;桥梁中三跨上部结构为钢筋混凝土预应力连续梁,跨径组合为30m+35m+30m,其余部分为22m长T形简支梁。承台平面尺寸5m×26m,以群桩形式布置128根桩,采用沉
甲公司与刘某签订了无固定期限劳动合同,根据劳动合同法律制度的规定,在劳动合同中约定的试用期不得超过()。
李老师在【化学反应原理】“原电池”一节课堂教学实施环节中,提出如下问题:镁﹣铝(NaOH溶液)形威原电池时作负极的材料是什么?教师请学生预测:大部分学生回答:铝为负极少部分学生回答:镁为负极【实验探究】
人们要做好任何工作,都要依时间、地点、条件为转移,这是因为
【B1】【B14】
最新回复
(
0
)