首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)为 (Ⅱ)有一个基础解系(0,1,1,0)T,(一1,2,2,1)T.求(I)和(Ⅱ)的全部公共解.
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)为 (Ⅱ)有一个基础解系(0,1,1,0)T,(一1,2,2,1)T.求(I)和(Ⅱ)的全部公共解.
admin
2017-10-21
30
问题
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)为
(Ⅱ)有一个基础解系(0,1,1,0)
T
,(一1,2,2,1)
T
.求(I)和(Ⅱ)的全部公共解.
选项
答案
一种思路是构造一个线性方程组(Ⅲ),使得它也以η
1
,η
2
为基础解系.于是(Ⅲ)和(Ⅱ)同解,从而(I)和(Ⅱ)的公共解也就是(I)和(Ⅲ)的公共解,可以解(I)和(Ⅲ)的联立方程组来求得.例如(Ⅲ)可以是: [*] 这种思路的困难在于构造方程组(Ⅲ),在考场上不是每个考生都能很顺利完成的. 另一种思路为:(I)和(Ⅱ)的公共解都必定是(Ⅱ)的解,因此有c
1
η
1
+c
2
η
2
的形式.它又满足(I),由此可决定c
1
与c
2
应该满足的条件. 具体计算过程:将c
1
η
1
+c
2
η
2
=(一c
2
,c
1
+2c
2
,c
1
+2c
2
,c
1
)
T
,代入(I),得到 [*] 解出c
1
+c
2
=0.即当c
1
+c
2
=0时c
1
η
1
+c
2
η
2
也是(I)的解.于是(I)和(Ⅱ)的公共解为:c(η
1
一η
2
),其中c可取任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/iKH4777K
0
考研数学三
相关试题推荐
设A,B为n阶矩阵,且A2=A,B2=B,(A+B)2=A+B.证明:AB=O,
设A,B分别为m阶和n阶可逆矩阵,则的逆矩阵为().
判断级数的敛散性.
判断级数的敛散性.
设A是m阶矩阵,B是n阶矩阵,且|A|=a,|B|=b,则=__________.
设方程组有解,则α1,α2,α3,α4满足的条件是_________.
设B≠O为三阶矩阵,且矩阵B的每个列向量为方程组的解,则k=_______,|B|=_______
设0<a<1,证明:方程arctanx=ax在(0,+∞)内有且仅有一个实根.
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,b)使
随机试题
生物体内核苷酸中的磷酸基团最常位于戊糖的
执业药师注册必须具备一定的条件。关于注册条件的说法错误的是()。
以下法律冲突的解决方法中,属于间接调整方法的有:
佛教创立于_______世纪,创始人姓乔达摩,名悉达多,佛教徒尊称其为“释迦牟尼”,意思是_______。
“朝为田舍郎,暮登天子堂。将相本无种,男儿当自强,少小须勤学,文章可立身。满朝朱紫贵,尽是读书人。”该诗反映的现象与()的推行直接相关。
下列语句中,没有语病的一句为()。
如图所示,在一个装着水的杯子里放进一块冰,则在冰块融化的过程中,杯子水面高度的变化情况应当是:
随枣会战
Ineednewheelsontheseshoes;thepresentonesare______.
在其他条件不变的情况下,资本有机构成的不断地提高,会导致()
最新回复
(
0
)