首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型XTAX的平方项系数全为0,设α=[1,2,一1]T且满足Aα=2α. (1)求该二次型的表示式; (2)求正交变换X=QY化该二次型为标准形,并写出所用坐标变换; (3)若A+kE正定,求k的取值.
已知三元二次型XTAX的平方项系数全为0,设α=[1,2,一1]T且满足Aα=2α. (1)求该二次型的表示式; (2)求正交变换X=QY化该二次型为标准形,并写出所用坐标变换; (3)若A+kE正定,求k的取值.
admin
2016-11-03
62
问题
已知三元二次型X
T
AX的平方项系数全为0,设α=[1,2,一1]
T
且满足Aα=2α.
(1)求该二次型的表示式;
(2)求正交变换X=QY化该二次型为标准形,并写出所用坐标变换;
(3)若A+kE正定,求k的取值.
选项
答案
(1)由题设得到 [*] 利用三阶行列式的算法和克拉默法则,得到 [*] 故该二次型为 X
T
AX=4x
1
x
2
+4x
1
x
3
—4x
2
x
3
. (2)由 |λE-A|=[*]=(λ-2)
2
(λ+4)=0 得到A的特征值为 λ
1
=λ
2
=2, λ
3
=-4. 即λ
1
为二重根,可用基础解系正交化的方法求出正交矩阵. 解(2E-A)X=0. 由[*]=B ① 得到属于λ
1
=2的一个特征向量 α
1
=[1,1,0]
T
, 另一个与之正交的特征向量设为X=[x
1
,x
2
,x
3
]
T
,则 BX=x
1
-x
2
-x
3
=0. ② 又由[*]X=0得到 x
1
+x
2
=0, ③ 联立式②与式③解之.由 [*] 得到与α
1
正交的特征向量为 β
2
=[1/2,一1/2,1]
T
. β
2
也可用施密特正交化的方法求得.为此,先由式①取两个线性无关的特征向量: α
1
=[1,1,0]
T
, α
2
=[1,0,1]
T
. 令β
1
=α
1
,则 β
2
=α
2
-[*] 当λ
3
=-4时,求解(一4E一A)X=0.由 [*] 得到属于λ
3
=-4的特征向量α
3
=[一1,1,1]
T
.于是α
1
,β
2
,α
3
为两两正交的特征向量.将α
1
,β
2
,α
3
单位化得到 [*] 令Q=[η
1
,η
2
,η
3
],则Q为正交矩阵.作坐标变换X=QY,则在此坐标变换下原二次型化为标准形: X
T
AX=Y
T
[*] (3)因A+kE的特征值为k+2,k+2,k一4,故当k>4时,矩阵A+kE正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/iXu4777K
0
考研数学一
相关试题推荐
[*]
离散型随机变量X的概率分布为(1)P{X=i}=a2i,i=1,2,…,100;(2)P{X=i}=2ai,i=1,2,…,分别求(1)、(2)中a的值.
甲袋中有2个白球,乙袋中有2个黑球,每次从各袋中任取一球交换后放人另一袋中,共交换3次,用X表示3次交换后甲袋中的白球数,求X的概率分布.
设f(x)在(a,b)内是严格下凸函数,证明对任何x1,x2∈(a,b),x1<x<x2,有不等式成立.
设曲线L:f(x,y)=l(f(x,y)具有一阶连续偏导数),过第Ⅱ象限内的点M和第N象限内的点N,F为己上从点M到点N的一段弧,则下列积分小于零的是
设随机变量X和Y的方差存在且不等于0,则D(X+Y):DX+DY是X和Y
设X1和X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)与f2(x),分布函数分别为F1(x)与F2(x),则
设y=y(x)是由函数方程㏑(x+2y)=x2-y2所确定的隐函数.(1)求曲线y=y(x)与直线y=-x的交点坐标(x0,yo);(2)求曲线y=y(x)在(1)中交点处的切线方程.
设a>0,f(x)=g(x)=,而D表示整个平面,则I==__________.
=sin4x+cos4x,则y(n)=________(n≥1).
随机试题
简述社会保险的基本属性。
不兑现纸币本位制的特点包括()。
关于精神分裂症单纯型,下列何种说法不正确
亚急性心内膜炎血培养标本采血量应为
工程项目计划的实施是实现()的重要阶段,通过项目工作计划的实施将所确定的项目目标变为具有一定()的具有实用价值的工程实体。
施工现场某些起重作业需由两台汽车起重机共同起吊,在作业时应由专人统一指挥。为确保作业安全,起吊重物的重量不得超过两机起重量总和的()。
以下描述属于对生产性建设项目的“三同时”监察内容的是()。
有监理文件档案中的合同与其他文件管理中,不需送城建档案管理部门保存的档案文件是( )。
静态RAM(SRAM)的特点是______。
Whatisbestwaytolearnalanguage?Weshould76.______rememberthatwealllearnedourownlanguagewell77.______wh
最新回复
(
0
)