首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型XTAX的平方项系数全为0,设α=[1,2,一1]T且满足Aα=2α. (1)求该二次型的表示式; (2)求正交变换X=QY化该二次型为标准形,并写出所用坐标变换; (3)若A+kE正定,求k的取值.
已知三元二次型XTAX的平方项系数全为0,设α=[1,2,一1]T且满足Aα=2α. (1)求该二次型的表示式; (2)求正交变换X=QY化该二次型为标准形,并写出所用坐标变换; (3)若A+kE正定,求k的取值.
admin
2016-11-03
25
问题
已知三元二次型X
T
AX的平方项系数全为0,设α=[1,2,一1]
T
且满足Aα=2α.
(1)求该二次型的表示式;
(2)求正交变换X=QY化该二次型为标准形,并写出所用坐标变换;
(3)若A+kE正定,求k的取值.
选项
答案
(1)由题设得到 [*] 利用三阶行列式的算法和克拉默法则,得到 [*] 故该二次型为 X
T
AX=4x
1
x
2
+4x
1
x
3
—4x
2
x
3
. (2)由 |λE-A|=[*]=(λ-2)
2
(λ+4)=0 得到A的特征值为 λ
1
=λ
2
=2, λ
3
=-4. 即λ
1
为二重根,可用基础解系正交化的方法求出正交矩阵. 解(2E-A)X=0. 由[*]=B ① 得到属于λ
1
=2的一个特征向量 α
1
=[1,1,0]
T
, 另一个与之正交的特征向量设为X=[x
1
,x
2
,x
3
]
T
,则 BX=x
1
-x
2
-x
3
=0. ② 又由[*]X=0得到 x
1
+x
2
=0, ③ 联立式②与式③解之.由 [*] 得到与α
1
正交的特征向量为 β
2
=[1/2,一1/2,1]
T
. β
2
也可用施密特正交化的方法求得.为此,先由式①取两个线性无关的特征向量: α
1
=[1,1,0]
T
, α
2
=[1,0,1]
T
. 令β
1
=α
1
,则 β
2
=α
2
-[*] 当λ
3
=-4时,求解(一4E一A)X=0.由 [*] 得到属于λ
3
=-4的特征向量α
3
=[一1,1,1]
T
.于是α
1
,β
2
,α
3
为两两正交的特征向量.将α
1
,β
2
,α
3
单位化得到 [*] 令Q=[η
1
,η
2
,η
3
],则Q为正交矩阵.作坐标变换X=QY,则在此坐标变换下原二次型化为标准形: X
T
AX=Y
T
[*] (3)因A+kE的特征值为k+2,k+2,k一4,故当k>4时,矩阵A+kE正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/iXu4777K
0
考研数学一
相关试题推荐
[*]
甲袋中有2个白球,乙袋中有2个黑球,每次从各袋中任取一球交换后放人另一袋中,共交换3次,用X表示3次交换后甲袋中的白球数,求X的概率分布.
设λ1,λ2是矩阵A的两个特征值,对应的特征向量分别为α1,α1,则().
设y=y(x)是函数方程ln(x2+y2)=x+y-1在(O,1)处所确定的隐函数,求dy及dy|(0,1).
设幂级数anxn在(-∞,+∞)内收敛,其和函数y(x)满足y"-2xy’-4y=0,y(0)=0,y’(0)=1.求y(x)的表达式.
设有一半径为R的球体,P0是球面一定点,球体上任意一点的密度与该点到P0的距离平方成正比(比例常数k>0),求球体的重心的位置.
设随机变量X~N(0,1),Y~N(1,4),且相关系数pXY=1,则P{Y=2X+1}=________.
求极限1+cot2x.
为清除井底的污泥,用缆绳将抓斗放入井底,抓起污泥后提出井口(见图).已知井深30m,抓斗自重400N,缆绳每米重50N,抓斗抓起的污泥重2000N,提升速度为3m/s,在提升过程中,污泥以20N/s的速度从抓斗缝隙中漏掉.现将抓起污泥的抓斗提升至井口,问克
(2001年试题,一)设矩阵A满足A2+A一4E=0,其中E为单位矩阵,则(A—E)-1=_____________.
随机试题
髋臼骨折从解剖结构可分为________和________。
集中送风采暖系统的吸风口底边至地面的距离宜采用()
关于密封胶嵌缝的做法,正确的有()。
单位和个人应在( )时,开具发票。
在中国古代,德育一直是统治者“齐风俗,一民心”“齐家治国平天下”的工具。这里所体现的德育功能是()。
几年前,学界几乎没有人不对他的学说大加挞伐,可现在当他被尊为大师之后,________的人简直要踏破他家的门槛。填入画横线部分最恰当的一项是:
科学家发现,儿童时期不接触细菌和病菌,是5岁以下人群糖尿病病例近年来急剧增加的主要原因之一。而那些生活在农村的孩子由于更早接触到带菌的物质,有更多机会与宠物相处,患过敏症、哮喘和湿疹等疾病的几率反而很低。所以,将细菌消灭得过于彻底的环境可能反而会给儿童的健
ThispassagetellsussomethingaboutAmerican______.Whyareyoungpersons’ideasimportant?Because______.
【B1】【B10】
A、Whatinformationthepersonleft.B、WhatMargaretsaidabouttheperson.C、WhereMargaretwent.D、Whenthemessagewasleft.A
最新回复
(
0
)