设A为3阶实对称矩阵,α1=(1,一1,一1)T,α2=(一2,1,0)T是齐次线性方程组Ax=0的基础解系,且矩阵A一6E不可逆,则 求齐次线性方程组(A一6E)x=0的通解;

admin2017-11-30  34

问题 设A为3阶实对称矩阵,α1=(1,一1,一1)T,α2=(一2,1,0)T是齐次线性方程组Ax=0的基础解系,且矩阵A一6E不可逆,则
求齐次线性方程组(A一6E)x=0的通解;

选项

答案因为矩阵A一6E不可逆,所以λ=6是矩阵A的一个特征值;另一方面,因为α1,α2是齐次线性方程组Ax=O的基础解系,所以λ=0是矩阵A的二重特征值,所以A的特征值为0,0,6。 齐次线性方程组(A一6E)x=0的通解是矩阵A的属于特征值λ=6的特征向量。 因为A为3阶实对称矩阵,从而属于不同特征值的特征向量正交。 设α3=(x1,x2,x3)T是矩阵A的属于特征值λ=6的一个特征向量,则 (α1,α3)=0,(α2,α3)=0, 解得α3=(一1,一2,1)T,所以齐次线性方程组(A一6E)x=0的通解为kα3,k为任意常数。

解析
转载请注明原文地址:https://kaotiyun.com/show/iZbD777K
0

最新回复(0)